Peptides Displayed as High Density Brush Polymers Resist Proteolysis and Retain Bioactivity

نویسندگان

  • Angela P. Blum
  • Jacquelin K. Kammeyer
  • Jian Yin
  • Dustin T. Crystal
  • Anthony M. Rush
  • Michael K. Gilson
  • Nathan C. Gianneschi
چکیده

We describe a strategy for rendering peptides resistant to proteolysis by formulating them as high-density brush polymers. The utility of this approach is demonstrated by polymerizing well-established cell-penetrating peptides (CPPs) and showing that the resulting polymers are not only resistant to proteolysis but also maintain their ability to enter cells. The scope of this design concept is explored by studying the proteolytic resistance of brush polymers composed of peptides that are substrates for either thrombin or a metalloprotease. Finally, we demonstrate that the proteolytic susceptibility of peptide brush polymers can be tuned by adjusting the density of the polymer brush and offer in silico models to rationalize this finding. We contend that this strategy offers a plausible method of preparing peptides for in vivo use, where rapid digestion by proteases has traditionally restricted their utility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthetic Polymers Active against Clostridium difficile Vegetative Cell Growth and Spore Outgrowth

Nylon-3 polymers (poly-β-peptides) have been investigated as synthetic mimics of host-defense peptides in recent years. These polymers are attractive because they are much easier to synthesize than are the peptides themselves, and the polymers resist proteolysis. Here we describe in vitro analysis of selected nylon-3 copolymers against Clostridium difficile, an important nosocomial pathogen tha...

متن کامل

Toward Infection-Resistant Surfaces: Achieving High Antimicrobial Peptide Potency by Modulating the Functionality of Polymer Brush and Peptide.

Bacterial infection associated with indwelling medical devices and implants is a major clinical issue, and the prevention or treatment of such infections is challenging. Antimicrobial coatings offer a significant step toward addressing this important clinical problem. Antimicrobial coatings based on tethered antimicrobial peptides (AMPs) on hydrophilic polymer brushes have been shown to be one ...

متن کامل

Surface-grafted polysarcosine as a peptoid antifouling polymer brush.

Poly(N-substituted glycine) "peptoids" are a class of peptidomimetic molecules receiving significant interest as engineered biomolecules. Sarcosine (i.e., poly(N-methyl glycine)) has the simplest side chain chemical structure of this family. In this Article, we demonstrate that surface-grafted polysarcosine (PSAR) brushes exhibit excellent resistance to nonspecific protein adsorption and cell a...

متن کامل

Polymerization of a peptide-based enzyme substrate.

Polymers of norbornenyl-modified peptide-based enzyme substrates have been prepared via ring-opening metathesis polymerization (ROMP). Peptides displayed on water-soluble homopolymers retain the ability to be enzymatically processed by a disease-associated enzyme. In contrast, when the peptides are densely arrayed on a nanoparticle derived from a self-assembled amphiphilic block-copolymer, they...

متن کامل

Fabrication of DNA polymer brush arrays by destructive micropatterning and rolling-circle amplification.

A method for fabricating DNA polymer brush arrays using photolithography and plasma etching followed by solid-phase enzymatic DNA amplification is reported. After attaching oligonucleotide primers to the surface of a glass coverslip, a thin layer of photoresist is spin-coated on the glass and patterned via photolithography to generate an array of posts in the resist. An oxygen-based plasma is t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 136  شماره 

صفحات  -

تاریخ انتشار 2014