Accounting for Genetic Architecture Improves Sequence Based Genomic Prediction for a Drosophila Fitness Trait
نویسندگان
چکیده
The ability to predict quantitative trait phenotypes from molecular polymorphism data will revolutionize evolutionary biology, medicine and human biology, and animal and plant breeding. Efforts to map quantitative trait loci have yielded novel insights into the biology of quantitative traits, but the combination of individually significant quantitative trait loci typically has low predictive ability. Utilizing all segregating variants can give good predictive ability in plant and animal breeding populations, but gives little insight into trait biology. Here, we used the Drosophila Genetic Reference Panel to perform both a genome wide association analysis and genomic prediction for the fitness-related trait chill coma recovery time. We found substantial total genetic variation for chill coma recovery time, with a genetic architecture that differs between males and females, a small number of molecular variants with large main effects, and evidence for epistasis. Although the top additive variants explained 36% (17%) of the genetic variance among lines in females (males), the predictive ability using genomic best linear unbiased prediction and a relationship matrix using all common segregating variants was very low for females and zero for males. We hypothesized that the low predictive ability was due to the mismatch between the infinitesimal genetic architecture assumed by the genomic best linear unbiased prediction model and the true genetic architecture of chill coma recovery time. Indeed, we found that the predictive ability of the genomic best linear unbiased prediction model is markedly improved when we combine quantitative trait locus mapping with genomic prediction by only including the top variants associated with main and epistatic effects in the relationship matrix. This trait-associated prediction approach has the advantage that it yields biologically interpretable prediction models.
منابع مشابه
Predictive Ability of Statistical Genomic Prediction Methods When Underlying Genetic Architecture of Trait Is Purely Additive
A simulation study was conducted to address the issue of how purely additive (simple) genetic architecture might impact on the efficacy of parametric and non-parametric genomic prediction methods. For this purpose, we simulated a trait with narrow sense heritability h2= 0.3, with only additive genetic effects for 300 loci in order to compare the predictive ability of 14 more practically used ge...
متن کاملAccuracy of Genomic Prediction under Different Genetic Architectures and Estimation Methods
The accuracy of genomic breeding value prediction was investigated in various levels of reference population size, trait heritability and the number of quantitative trait locus (QTL). Five Bayesian methods, including Bayesian Ridge regression, BayesA, BayesB, BayesC and Bayesian LASSO, were used to estimate the marker effects for each of 27 scenarios resulted from combining three levels for her...
متن کاملمقایسه روش های مختلف آماری در انتخاب ژنومی گاوهای هلشتاین
Genomic selection combines statistical methods with genomic data to predict genetic values for complex traits. The accuracy of prediction of genetic values in selected population has a great effect on the success of this selection method. Accuracy of genomic prediction is highly dependent on the statistical model used to estimate marker effects in reference population. Various factors such a...
متن کاملارزیابی ژنومی صفات آستانه ای با معماری های ژنتیکی متفاوت با استفاده از روشهای بیزی
The current study was carried out to evaluate accuracy of some Bayesian methods for genomic breeding values prediction for threshold traits with different types of genetic architecture based on distribution of gene effect and QTL numbers. A genome consisted of 3 chromosomes of 100 CM with 2000 single nucleotide polymorphisms (SNP) was simulated. The QTL numbers were 0.01, 0.05 and 0.1 of total ...
متن کاملUsing Whole-Genome Sequence Data to Predict Quantitative Trait Phenotypes in Drosophila melanogaster
Predicting organismal phenotypes from genotype data is important for plant and animal breeding, medicine, and evolutionary biology. Genomic-based phenotype prediction has been applied for single-nucleotide polymorphism (SNP) genotyping platforms, but not using complete genome sequences. Here, we report genomic prediction for starvation stress resistance and startle response in Drosophila melano...
متن کامل