deglaciation High tide of the warm Pliocene : Implications of global sea level for Antarctic

نویسندگان

  • Benjamin S. Cramer
  • Yair Rosenthal
  • W. Richard Peltier
  • Sindia Sosdian
  • Kenneth G. Miller
  • James D. Wright
  • James V. Browning
  • Andrew Kulpecz
  • Michelle Kominz
چکیده

doi: 10.1130/G32869.1 2012;40;407-410 Geology Naish, Benjamin S. Cramer, Yair Rosenthal, W. Richard Peltier and Sindia Sosdian Kenneth G. Miller, James D. Wright, James V. Browning, Andrew Kulpecz, Michelle Kominz, Tim R. deglaciation High tide of the warm Pliocene: Implications of global sea level for Antarctic Email alerting services articles cite this article to receive free e-mail alerts when new www.gsapubs.org/cgi/alerts click Subscribe to subscribe to Geology www.gsapubs.org/subscriptions/ click Permission request to contact GSA http://www.geosociety.org/pubs/copyrt.htm#gsa click official positions of the Society. citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect presentation of diverse opinions and positions by scientists worldwide, regardless of their race, includes a reference to the article's full citation. GSA provides this and other forums for the the abstracts only of their articles on their own or their organization's Web site providing the posting to further education and science. This file may not be posted to any Web site, but authors may post works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent their employment. Individual scientists are hereby granted permission, without fees or further Copyright not claimed on content prepared wholly by U.S. government employees within scope of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coralline red algae from the Lower Pliocene Shagra Formation of Wadi Wizer, Red Sea coast, Egypt: Biofacies analysis, systematics and palaeoenvironmental implications

Coralline red algae are highly abunadant and well diversified in the well exposed carbonate deposits of the Lower Pliocene Shagra Formation at Wadi Wizer, Red Sea coast, Egypt. Lithostratigraphically, the Shagra Formation unconformably overlies the Late Miocene Marsa Alam Formation and underlies the Quaternary deposits. This carbonate facies is dominated by different assemblage of coralline red...

متن کامل

Windblown Pliocene diatoms and East Antarctic Ice Sheet retreat

Marine diatoms in tillites along the Transantarctic Mountains (TAMs) have been used to suggest a diminished East Antarctic Ice Sheet (EAIS) during Pliocene warm periods. Updated ice-sheet modelling shows significant Pliocene EAIS retreat, creating marine embayments into the Wilkes and Aurora basins that were conducive to high diatom productivity and rapid accumulation of diatomaceous sediments....

متن کامل

Mid-Pliocene sea level and continental ice volume based on coupled benthic Mg/Ca palaeotemperatures and oxygen isotopes.

Ostracode magnesium/calcium (Mg/Ca)-based bottom-water temperatures were combined with benthic foraminiferal oxygen isotopes in order to quantify the oxygen isotopic composition of seawater, and estimate continental ice volume and sea-level variability during the Mid-Pliocene warm period, ca 3.3-3.0Ma. Results indicate that, following a low stand of approximately 65m below present at marine iso...

متن کامل

Northern Hemisphere Glaciation during the Globally Warm Early Late Pliocene

The early Late Pliocene (3.6 to ∼3.0 million years ago) is the last extended interval in Earth's history when atmospheric CO2 concentrations were comparable to today's and global climate was warmer. Yet a severe global glaciation during marine isotope stage (MIS) M2 interrupted this phase of global warmth ∼3.30 million years ago, and is seen as a premature attempt of the climate system to estab...

متن کامل

Large-scale glaciation and deglaciation of Antarctica during the Late Eocene

Approximately 34 m.y. ago, Earth’s climate transitioned from a relatively warm, ice-free world to one characterized by cooler climates and a large, permanent Antarctic Ice Sheet. Understanding this major climate transition is important, but determining its causes has been complicated by uncertainties in the basic patterns of global temperature and ice volume change. Here we use an unusually wel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012