Molecular recognition of DNA base pairs by the formamido/pyrrole and formamido/imidazole pairings in stacked polyamides
نویسندگان
چکیده
Polyamides containing an N-terminal formamido (f) group bind to the minor groove of DNA as staggered, antiparallel dimers in a sequence-specific manner. The formamido group increases the affinity and binding site size, and it promotes the molecules to stack in a staggered fashion thereby pairing itself with either a pyrrole (Py) or an imidazole (Im). There has not been a systematic study on the DNA recognition properties of the f/Py and f/Im terminal pairings. These pairings were analyzed here in the context of f-ImPyPy, f-ImPyIm, f-PyPyPy and f-PyPyIm, which contain the central pairing modes, -ImPy- and -PyPy-. The specificity of these triamides towards symmetrical recognition sites allowed for the f/Py and f/Im terminal pairings to be directly compared by SPR, CD and DeltaT (M) experiments. The f/Py pairing, when placed next to the -ImPy- or -PyPy- central pairings, prefers A/T and T/A base pairs to G/C base pairs, suggesting that f/Py has similar DNA recognition specificity to Py/Py. With -ImPy- central pairings, f/Im prefers C/G base pairs (>10 times) to the other Watson-Crick base pairs; therefore, f/Im behaves like the Py/Im pair. However, the f/Im pairing is not selective for the C/G base pair when placed next to the -PyPy- central pairings.
منابع مشابه
Energetic basis for selective recognition of T*G mismatched base pairs in DNA by imidazole-rich polyamides.
To complement available structure and binding results and to develop a detailed understanding of the basis for selective molecular recognition of T.G mismatches in DNA by imidazole containing polyamides, a full thermodynamic profile for formation of the T.G-polyamide complex has been determined. The amide-linked heterocycles f-ImImIm and f-PyImIm (where f is formamido group, Im is imidazole and...
متن کاملExtension of Sequence-Specific Recognition in the Minor Groove of DNA by Pyrrole-Imidazole Polyamides to 9-13 Base Pairs
The sequence-specific recognition of the minor groove of DNA by pyrrole-imidazole polyamides has been extended to 9-13 base pairs (bp). Four polyamides, ImPyPy-Py-PyPyPy-Dp, ImPyPy-G-PyPyPy-Dp, ImPyPyâ-PyPyPy-Dp, and ImPyPy-γ-PyPyPy-Dp (Im ) N-methylimidazole, Py ) N-methylpyrrole, Dp ) N,Ndimethylaminopropylamide, G ) glycine, â ) â-alanine, and γ ) γ-aminobutyric acid), were synthesized and c...
متن کاملAlternative heterocycles for DNA recognition: the benzimidazole/imidazole pair.
Boc-protected benzimidazole-pyrrole, benzimidazole-imidazole, and benzimidazole-methoxypyrrole amino acids were synthesized and incorporated into DNA binding polyamides, comprised of N-methyl pyrrole and N-methyl imidazole amino acids, by means of solid-phase synthesis on an oxime resin. These hairpin polyamides were designed to determine the DNA recognition profile of a side-by-side benzimidaz...
متن کاملExpanding the repertoire of heterocycle ring pairs for programmable minor groove DNA recognition.
The discrimination of the four Watson-Crick base pairs by minor groove DNA-binding polyamides have been attributed to the specificity of three five-membered aromatic amino acid subunits, 1-methyl-1H-imidazole (Im), 1-methyl-1H-pyrrole (Py), and 3-hydroxy-1H-pyrrole (Hp) paired four different ways. The search for additional ring pairs that demonstrate DNA-sequence specificity has led us to a new...
متن کاملAliphatic/Aromatic Amino Acid Pairings for Polyamide Recognition in the Minor Groove of DNA
Selective placement of an aliphatic â-alanine (â) residue paired side-by-side with either a pyrrole (Py) or imidazole (Im) aromatic amino acid is found to compensate for sequence composition effects for recognition of the minor groove of DNA by hairpin pyrrole-imidazole polyamides. A series of polyamides were prepared which contain pyrrole and imidazole aromatic amino acids, as well as γ-aminob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 33 شماره
صفحات -
تاریخ انتشار 2005