Polarization energy gradients in combined quantum mechanics, effective fragment potential, and polarizable continuum model calculations.

نویسندگان

  • Hui Li
  • Mark S Gordon
چکیده

A method that combines quantum mechanics (QM), typically a solute, the effective fragment potential (EFP) discrete solvent model, and the polarizable continuum model is described. The EFP induced dipoles and polarizable continuum model (PCM) induced surface charges are determined in a self-consistent fashion. The gradients of these two energies with respect to molecular coordinate changes are derived and implemented. In general, the gradients can be formulated as simple electrostatic forces and torques among the QM nuclei, electrons, EFP static multipoles, induced dipoles, and PCM induced charges. Molecular geometry optimizations can be performed efficiently with these gradients. The formulas derived for EFPPCM can be generally applied to other combined molecular mechanics and continuum methods that employ induced dipoles and charges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum mechanics investigation of acid dissociation constant of carboxylic acids in aqueous solution

According to the Bronsted definition, any compound which has a hydrogen atom is an acid, since itmay be lost as a proton. A thermodynamical cycle is proposed to calculate absolute pKa values forBronsted acids in aqueous solution. The equilibrium of dissociation of a Bronsted acid depends onthe interaction of the acid and its conjugate base with solvent molecules. There fore the pKa valuedepends...

متن کامل

Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies

Related Articles Basis set convergence of explicitly correlated double-hybrid density functional theory calculations J. Chem. Phys. 135, 144119 (2011) An explicitly correlated local coupled cluster method for calculations of large molecules close to the basis set limit J. Chem. Phys. 135, 144117 (2011) An efficient local coupled cluster method for accurate thermochemistry of large systems J. Ch...

متن کامل

A Combined Discrete/Continuum Solvation Model: Application to Glycine

A new solvation model that combines discrete and continuum descriptions of the solvent has been developed. The discrete solvent molecules are represented by effective fragment potentials (EFP), while the continuum is represented by the Onsager model. This (EFP+Onsager) model has been applied to the relative stabilities of the neutral and zwitterionic forms of glycine. Other supermolecule-contin...

متن کامل

Quantum mechanical/molecular mechanical/continuum style solvation model: linear response theory, variational treatment, and nuclear gradients.

Linear response and variational treatment are formulated for Hartree-Fock (HF) and Kohn-Sham density functional theory (DFT) methods and combined discrete-continuum solvation models that incorporate self-consistently induced dipoles and charges. Due to the variational treatment, analytic nuclear gradients can be evaluated efficiently for these discrete and continuum solvation models. The forces...

متن کامل

Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation

The analytic energy gradients for the combined fragment molecular orbital and polarizable continuum model (FMO/PCM) method are derived and implemented. Applications of FMO/PCM geometry optimization to polyalanine show that the structures obtained with the FMO/PCM method are very close to those obtained with the corresponding full ab initio PCM methods. FMO/PCM (RHF/6-31G* level) is used to opti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 126 12  شماره 

صفحات  -

تاریخ انتشار 2007