Role of receptor-independent low density lipoprotein transport in the maintenance of tissue cholesterol balance in the normal and WHHL rabbit.
نویسندگان
چکیده
These studies were undertaken to determine the role of receptor-independent low density lipoprotein (LDL) transport in cholesterol balance across individual tissues and the whole animal. Homologous LDL, which measures total LDL transport, and methylated heterologous LDL, which measures receptor-independent LDL uptake, were cleared from the plasma at very different rates in the NZ control rabbit (3,900 and 1,010 microliter/hr per kg, respectively) whereas in the WHHL rabbit both preparations were cleared at essentially the same rate (approximately 1,070 microliter/hr per kg). Receptor-independent LDL clearance was detected in all tissues of the NZ control rabbit and these varied from 32 (spleen) to less than 0.5 (skeletal muscle) microliter/hr per g. In contrast, receptor-dependent LDL uptake was found in only about half of these same organs. In the WHHL rabbit, the rates of receptor-independent LDL transport were the same as in the NZ control rabbit, but no receptor-dependent uptake was detected. Using these clearance values it was calculated that in the control rabbit nearly 70% of LDL-cholesterol was removed from the plasma by the liver and 89% of this was receptor-mediated. With loss of receptor activity, however, the burden of LDL degradation was shifted away from the liver so that approximately 70% of LDL-cholesterol uptake took place in the extra-hepatic tissues of the WHHL rabbit. Thus, in the normal animal, the primary function of receptor-dependent LDL transport is to promote the rapid uptake and disposal of plasma LDL by the liver. In the absence of such receptor activity, cholesterol balance across most individual organs and the whole animal remains essentially normal and is mediated by the receptor-independent process. Because of the much lower absolute clearance rates manifested by this transport mechanism, however, substantial and predictable elevations in the circulating plasma LDL-cholesterol levels are required to maintain this balance.
منابع مشابه
ApoVLDL of the Watanabe Heritable Hyperlipidemic rabbit and the cholesterol-fed rabbit.
The Watanabe Heritable Hyperlipidemic rabbit (WHHL rabbit) and the cholesterol-fed rabbit have been reported to show elevations of very low density (VLDL), intermediate density (IDL), and low density lipoproteins (LDL), and a broad-beta band on agarose-gel electrophoresis. We have studied the lipid and lipoprotein composition of WHHL rabbits and cholesterol-fed rabbits using ultracentrifugal an...
متن کاملAttenuating Effect of Curcumin on Diet-induced Hypercholesterolemia in Mice
Background and Aims: Atherosclerosis is currently a chronic disease in which cholesterols accumulate in large arteries. Many genes such as liver X receptor α (LXRα) are involved in the cholesterol homeostasis. Curcumin, the main active polyphenol component derived from Curcuma longa, contribute to anti-inflammation and antioxidant in the treatment of atherosclerosis. Thus, this stud...
متن کاملBeta-very low density lipoprotein uptake in cultured fibroblasts and smooth muscle cells from Watanabe heritable hyperlipidemic rabbits.
Watanabe Heritable Hyperlipidemic (WHHL) rabbits are an important animal model used to study the effects of defective low density lipoprotein (LDL) receptors on lipoprotein metabolism. In the present study, the receptor-mediated catabolism of apolipoprotein (apo) E-containing lipoproteins was investigated in fibroblasts and smooth muscle cells cultured from WHHL rabbits. Fibroblasts from WHHL r...
متن کاملChronic Aerobic Exercise Decreases Lectin-Like Low Density Lipoprotein (LOX-1) Receptor Expression in Heart of Diabetic Rat
Background: Overexpression of lectin-like low density lipoprotein (LOX-1) receptor plays an important role in hyperglycemia-induced vascular complications such as atherosclerosis. Based on the beneficial effects of exercise on preventing cardiovascular complications of diabetes, we aimed to examine the protective effects of aerobic exercise on expression of LOX-1 receptor and production of free...
متن کاملA novel mechanism by which probucol lowers low density lipoprotein levels demonstrated in the LDL receptor-deficient rabbit.
Treatment of low density lipoprotein (LDL) receptor-deficient rabbits (WHHL rabbits) with probucol (1% w/w in a chow diet) lowered their LDL-cholesterol levels by 36%, consonant with the reported effectiveness of the drug in patients deficient in the LDL receptor. Initial studies of LDL fractional catabolic rate (FCR) using 125I-labeled LDL prepared from the serum of untreated WHHL rabbits show...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 28 1 شماره
صفحات -
تاریخ انتشار 1987