Jacobi Elliptic Numerical Solutions for the Time Fractional Dispersive Longwave Equation
نویسندگان
چکیده
The fractional derivatives in the sense of Caputo, and the homotopy analysis method (HAM) are used to construct the approximate solutions for nonlinear fractional dispersive long wave equation with reaspect to time fractional derivative. The HAM contains a certain auxiliary parameter which provides us with a simple way to adjust and control the convergence region and rate of convergence of the series solution. AMS Subject Classification: homotopy analysis method, Caputo’s fractional derivative, fractional dispersive long wave equation
منابع مشابه
A new Jacobi elliptic function rational expansion method and its application to (1+ 1)-dimensional dispersive long wave equation
With the aid of computerized symbolic computation, a new elliptic function rational expansion method is presented by means of a new general ans€atz and is very powerful to uniformly construct more new exact doubly-periodic solutions in terms of rational formal Jacobi elliptic function of nonlinear evolution equations (NLEEs). As an application of the method, we choose a (1+ 1)-dimensional dispe...
متن کاملNumerical Solutions for Fractional Black-Scholes Option Pricing Equation
In this article we have applied a numerical finite difference method to solve the Black-Scholes European and American option pricing both presented by fractional differential equations in time and asset.
متن کاملExact Solutions for Nonlinear Evolution Equations with Jacobi Elliptic Function Rational Expansion Method
In this paper we implement the unified rational expansion methods, which leads to find exact rational formal polynomial solutions of nonlinear partial differential equations (NLPDEs), to the (1+1)dimensional dispersive long wave and Clannish Random Walker’s parabolic (CRWP) equations. By using this scheme, we get some solutions of the (1+1)-dimensional dispersive long wave and CRWP equations in...
متن کاملSolving the fractional integro-differential equations using fractional order Jacobi polynomials
In this paper, we are intend to present a numerical algorithm for computing approximate solution of linear and nonlinear Fredholm, Volterra and Fredholm-Volterra integro-differential equations. The approximated solution is written in terms of fractional Jacobi polynomials. In this way, firstly we define Riemann-Liouville fractional operational matrix of fractional order Jacobi polynomials, the...
متن کاملPresentation of two models for the numerical analysis of fractional integro-differential equations and their comparison
In this paper, we exhibit two methods to numerically solve the fractional integro differential equations and then proceed to compare the results of their applications on different problems. For this purpose, at first shifted Jacobi polynomials are introduced and then operational matrices of the shifted Jacobi polynomials are stated. Then these equations are solved by two methods: Caputo fractio...
متن کامل