Editorial: Mapping Psychopathology with fMRI and Effective Connectivity Analysis

نویسندگان

  • Baojuan Li
  • Adeel Razi
  • Karl J. Friston
چکیده

Citation: Li B, Razi A and Friston KJ (2017) Editorial: Mapping Psychopathology with fMRI and Effective Connectivity Analysis. Editorial on the Research Topic Mapping Psychopathology with fMRI and Effective Connectivity Analysis Distributed networks of interacting brain systems—rather than a single area—are usually involved in the execution of a specific cognitive task. Recent advances in neuroimaging techniques now allow us to see how these interacting brain regions are integrated and cooperate with each other to prosecute cognitive operations (Razi and Friston, 2016). Brain connectivity analyses based on electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) signals characterize neuronal responses in terms of how brain activity is induced by external stimuli and propagates among distributed brain regions, and thus may help answer key questions about functional brain architectures. The insights that brain connectivity analyses offer is also crucial for us to elucidate the neurobiological correlates underlying many neuropsychiatric disorders. Functional connectivity and effective connectivity are generally used to measure functional integration in neuroimaging. The former examines (undirected) statistical dependencies (e.g., temporal correlations) between brain regions and has been extensively studied to characterize brain networks at rest. However, understanding the precise mechanisms mediating cognitive processes depend on directed information flow within brain networks. Thus, the current research topic focuses on mapping psychopathology with (directed) effective connectivity analysis, which models causal interactions among brain regions. We attempt to further improve current understanding of the neural mechanisms of major neuropsychiatric disorders by exploring how signals are transmitted differently from one region to another in healthy controls and patients. This comparison may help explain the pathophysiology and psychopathology seen in these disorders—at a network and possibly synaptic level. In this research topic, we invited world-renowned experts to present their recent work that have utilized various models of directed connectivity; including psychophysiological interactions (PPI), Granger causality (GC), and dynamic causal modeling (DCM) to investigate directed connectivity in healthy subjects and patients with neuropsychiatric disorders. The papers in this research topic further our knowledge of the neurobiological mechanisms underlying neurological and psychiatric disorders. We will see that young people with OCD exhibit increased dorsal anterior cingulate cortex (dACC) modulatory effects during the performance of working memory tasks (Diwadkar et al.). There is also new evidence suggesting that neurodegenerative disorders like Parkinson's disease (Yan et al.) and Huntington's disease (Minkova et al.) are characterized by impaired causal

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of mild cognitive impairment disease using brain functional connectivity and graph analysis in fMRI data

Background: Early diagnosis of patients in the early stages of Alzheimer's, known as mild cognitive impairment, is of great importance in the treatment of this disease. If a patient can be diagnosed at this stage, it is possible to treat or delay Alzheimer's disease. Resting-state functional magnetic resonance imaging (fMRI) is very common in the process of diagnosing Alzheimer's disease. In th...

متن کامل

Analysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension

Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...

متن کامل

Large-scale DCMs for resting-state fMRI

This paper considers the identification of large directed graphs for resting-state brain networks based on biophysical models of distributed neuronal activity, that is, effective connectivity. This identification can be contrasted with functional connectivity methods based on symmetric correlations that are ubiquitous in resting-state functional MRI (fMRI). We use spectral dynamic causal modeli...

متن کامل

Feature Selection Based on Genetic Algorithm in the Diagnosis of Autism Disorder by fMRI

Background: Autism Spectrum Disorder (ASD) occurs based on the continuous deficit in a person’s verbal skills, visual, auditory, touch, and social behavior. Over the last two decades, one of the most important approaches in studying brain functions in autistic persons is using functional Magnetic Resonance Imaging (fMRI). Objectives: It is common to use all brain regions in functional extracti...

متن کامل

Changes in Effective Connectivity Network Patterns in Drug Abusers, Treated With Different Methods

Introduction: Various treatment methods for drug abusers will result in different success rates. This is partly due to different neural assumptions and partly due to various rate of relapse in abusers because of different circumstances. Investigating the brain activation networks of treated subjects can reveal the hidden mechanisms of the therapeutic methods. Methods: We studied three groups o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017