Expression and validation of PvPGIP genes for resistance to white mold (Sclerotinia sclerotiorum) in common beans (Phaseolus vulgaris L.).
نویسندگان
چکیده
The interaction between polygalacturonase-inhibiting proteins (PGIPs), produced by plants, and endopolygalacturonases (PGs), produced by fungi, limits the destructive potential of PGs and can trigger plant defense responses. This study aimed to i) investigate variation in the expression of different common bean (Phaseolus vulgaris L.) genotypes and its relationship with resistance to white mold (Sclerotinia sclerotiorum); ii) determine the expression levels of PvPGIP genes at different time points after inoculation with white mold; and iii) investigate differences in PvPGIP gene expression between two white mold isolates with different levels of aggressiveness. Four bean lines were analyzed, including two lines from a recurrent selection for white mold (50/5 and 84/6), one resistant line that was not adapted to Brazilian conditions (Cornell 605), and one susceptible line (Corujinha). Gene expression was investigated at 0, 1, 2, 3, and 5 days after inoculation. The isolate UFLA 03 caused no significant difference in the relative expression of any gene examined, and was inefficient in discriminating among the genotypes. For the isolate UFLA 116, all of the genes were differentially expressed, as they were associated with resistance to white mold, and the expressions increased until the third day after inoculation. The 50/5 line was not significantly different from the Corujinha line for all of the genes analyzed. However, this line had a resistance level that was similar to that of Cornell 605, according to the straw test. Therefore, the incorporation of PvPGIP genes can increase the resistance of lines derived from recurrent selection.
منابع مشابه
Chemigation with Benomyl and Fluazinam and their Fungicidal Effects in Soil for White Mold Control on Dry Beans
The effectiveness of fungicides in controlling white mold (Sclerotinia sclerotiorum) of dry beans (Phaseolus vulgaris) was evaluated when they were applied through irrigation water directly onto the plants or only to the soil. Two field trials were installed in April 1998 and April 1999 in Viçosa, MG. Trials were conducted as a (2 x 3) + 1 factorial: two fungicides x three application modes + o...
متن کاملAnalysis of genes that are differentially expressed during the Sclerotinia sclerotiorum–Phaseolus vulgaris interaction
The fungus Sclerotinia sclerotiorum (Lib.) de Bary, one of the most important plant pathogens, causes white mold on a wide range of crops. Crop yield can be dramatically decreased due to this disease, depending on the plant cultivar and environmental conditions. In this study, a suppression subtractive hybridization cDNA library approach was used for the identification of pathogen and plant gen...
متن کاملRelationship Between Oxalate, Oxalate Oxidase Activity, Oxalate Sensitivity, and White Mold Susceptibility in Phaseolus coccineus.
ABSTRACT Sclerotinia sclerotiorum is a necrotrophic pathogen that devastates the yields of numerous crop species, including beans. The disease in common bean and pea is referred to as white mold. We examined the relationship between oxalate, an established virulence factor of S. sclerotiorum, and partial white mold resistance of scarlet runner bean (Phaseolus coccineus). P. coccineus genotypes ...
متن کاملEffect of different carbon sources on proteases secreted by the fungal pathogen Sclerotinia sclerotiorum during Phaseolus vulgaris infection.
Sclerotinia sclerotiorum (Sclerotiniaceae) is a plant pathogenic fungus that causes white mold disease in vegetable crops, including the common bean (Phaseolus vulgaris). Proteases produced by fungi are normally an important part of the pathogenic process in the host. We examined the effect of different carbon sources--pectin, glucose, and cell wall of P. vulgaris on the production of proteases...
متن کاملPopulation structure and phenotypic variation of Sclerotinia sclerotiorum from dry bean (Phaseolus vulgaris) in the United States
The ascomycete pathogen Sclerotinia sclerotiorum is a necrotrophic pathogen on over 400 known host plants, and is the causal agent of white mold on dry bean. Currently, there are no known cultivars of dry bean with complete resistance to white mold. For more than 20 years, bean breeders have been using white mold screening nurseries (wmn) with natural populations of S. sclerotiorum to screen ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics and molecular research : GMR
دوره 15 3 شماره
صفحات -
تاریخ انتشار 2016