Palladium containing periodic mesoporous organosilica with imidazolium framework (Pd@PMO-IL): an efficient and recyclable catalyst for the aerobic oxidation of alcohols.
نویسندگان
چکیده
The application of a novel palladium containing ionic liquid based periodic mesoporous organosilica (Pd@PMO-IL) catalyst in the aerobic oxidation of primary and secondary alcohols under molecular oxygen and air atmospheres is investigated. It was found that the catalyst is quite effective for the selective oxidation of several activated and non-activated alcoholic substrates. The catalyst system could be successfully recovered and reused several times without any significant decrease in activity and selectivity. Moreover, the hot filtration test, atomic absorption spectroscopy (AA) and kinetic study with and without selective catalyst poisons showed that the catalyst works in a heterogeneous pathway without any palladium leaching in reaction solution. Furthermore, nitrogen-sorption experiment and transmission electron microscopy (TEM) image proved the superior stability of high-ordered PMO-IL mesostructure during reaction process. TEM image also confirmed the presence of well-distributed Pd-nanoparticles in the uniform mesochannels of the material. These observations can be attributed to the ionic liquid nature of PMO-IL mesostructure which facilitates the reaction through production, chemical immobilization and stabilization of active palladium nanoparticles, as well as preventing Pd-agglomeration during overall process.
منابع مشابه
Highly efficient three-component coupling reaction catalyzed by gold nanoparticles supported on periodic mesoporous organosilica with ionic liquid framework.
A novel gold nanoparticle supported periodic mesoporous organosilica with alkylimidazolium framework, Au@PMO-IL, was shown to be a highly active and recyclable catalyst for three-component coupling reaction of aldehyde, alkyne and amine to give the corresponding propargylamine.
متن کاملCatalytic application of an organosuperbase denderon grafted on mesoporous SBA-15 and related palladium complex in the aerobic oxidation of alcohols
An efficient synthetic method for successful synthesis of amine denderon on SBA-15 and related Pd (II) complex has been developed. This modified mesoporous material was characterized by various techniques such as TEM, XRD, atomic absorption spectroscopy, N2 adsorption-desorption, and FT-IR. The catalytic activities of the prepared catalysts were investigated by employing aerobic oxidation of al...
متن کاملUnexpected golden Ullmann reaction catalyzed by Au nanoparticles supported on periodic mesoporous organosilica (PMO).
We demonstrated an unprecedented example of Ullmann homocoupling reaction of aryl iodides over a novel recyclable gold catalyst comprising Au nanoparticles supported on a bifunctional periodic mesoporous organosilica (Au@PMO).
متن کاملDesign of Highly Uniform Platinum and Palladium Nanoparticle Decoration on TiO2 Nanotube Arrays: An Efficient Anode to the Electro-Oxidation of Alcohols
We explore electro-catalytic properties of a system consisting of platinum and palladium nanoparticles dispersed over a nanotubular self-organized TiO2 matrix. These electrodes prepared by electroess and microemulsion of palladium and palladium nanoparticles on to TiO2 nanotubes, respectively. Titanium oxide nanotubes were fabricated by anodizing titanium foil in ethylene glycol (EG) fluoride-c...
متن کاملPalladium Loaded on Magnetic Nanoparticles as Efficient and Recyclable Catalyst for the Suzuki- Miyaura Reaction
Palladium is the best metal catalyst for Suzuki cross coupling reaction for synthesize of unsymmetrical biaryl compounds. But its high cost limits its application in wide scale. Using of nanoscale particles as active catalytic cites is a good approach for reducing needed noble metal. By loading precious nanoparticles on magnetic nanocores as a support, recycling and reusing of catalyst will be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Organic & biomolecular chemistry
دوره 9 21 شماره
صفحات -
تاریخ انتشار 2011