An Efficient Algorithm for Euclidean Shortest Paths Among Polygonal Obstacles in the Plane

نویسندگان

  • Sanjiv Kapoor
  • S. N. Maheshwari
  • Joseph S. B. Mitchell
چکیده

We give an algorithm to compute a (Euclidean) shortest path in a polygon with h holes and a total of n vertices. The algorithm uses O(n) space and requires O(n + h 2 log n) time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Optimal Algorithm for L1 Shortest Paths Among Obstacles in the Plane (Draft)

We present an optimal Θ(n log n) algorithm for determining shortest paths according to the L1 (L∞) metric in the presence of disjoint polygonal obstacles in the plane. Our algorithm requires only linear O(n) space to build a planar subdivision (a Shortest Path Map) with respect to a fixed source point such that the length of a shortest path from the source to any query point can be reported in ...

متن کامل

Computing L1 Shortest Paths among Polygonal Obstacles in the Plane

Given a point s and a set of h pairwise disjoint polygonal obstacles of totally n vertices in the plane, we present a new algorithm for building an L1 shortest path map of size O(n) in O(T ) time and O(n) space such that for any query point t, the length of the L1 shortest obstacleavoiding path from s to t can be reported in O(log n) time and the actual shortest path can be found in additional ...

متن کامل

A Nearly Optimal Algorithm for Finding L 1 Shortest Paths among Polygonal Obstacles in the Plane

Given a set of h pairwise disjoint polygonal obstacles of totally n vertices in the plane, we study the problem of computing an L1 (or rectilinear) shortest path between two points avoiding the obstacles. Previously, this problem has been solved in O(n log n) time and O(n) space, or alternatively in O(n + h log n) time and O(n + h log h) space. A lower bound of Ω(n + h log h) time and Ω(n) spac...

متن کامل

Efficient Computation of Euclidean Shortest Paths in the Plane

We propose a new algorithm for a classical problem in plane computational geometry: computing a shortest path between two points in the presence of polygonal obstacles. Our algorithm runs in worst-case time O(nlog2n) and requires O(n1ogn) space, where n is the total number of vertices in the obstacle polygons. Our algorithm actually computes a planar map that encodes shortest paths from a fixed...

متن کامل

An Optimal Algorithm for Euclidean Shortest Paths in the Plane

We propose an optimal-time algorithm for a classical problem in plane computational geometry: computing a shortest path between two points in the presence of polygonal obstacles. Our algorithm runs in worst-case time O(n logn) and requires O(n logn) space, where n is the total number of vertices in the obstacle polygons. The algorithm is based on an eecient implementation of wavefront propagati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 18  شماره 

صفحات  -

تاریخ انتشار 1997