On the mechanism underlying photosynthetic limitation upon trigger hair irritation in the carnivorous plant Venus flytrap (Dionaea muscipula Ellis)
نویسندگان
چکیده
Mechanical stimulation of trigger hairs on the adaxial surface of the trap of Dionaea muscipula leads to the generation of action potentials and to rapid leaf movement. After rapid closure secures the prey, the struggle against the trigger hairs results in generation of further action potentials which inhibit photosynthesis. A detailed analysis of chlorophyll a fluorescence kinetics and gas exchange measurements in response to generation of action potentials in irritated D. muscipula traps was used to determine the 'site effect' of the electrical signal-induced inhibition of photosynthesis. Irritation of trigger hairs and subsequent generation of action potentials resulted in a decrease in the effective photochemical quantum yield of photosystem II (Φ(PSII)) and the rate of net photosynthesis (A(N)). During the first seconds of irritation, increased excitation pressure in photosystem II (PSII) was the major contributor to the decreased Φ(PSII). Within ∼1 min, non-photochemical quenching (NPQ) released the excitation pressure at PSII. Measurements of the fast chlorophyll a fluorescence transient (O-J-I-P) revealed a direct impact of action potentials on the charge separation-recombination reactions in PSII, although the effect seems to be small rather than substantial. All the data presented here indicate that the main primary target of the electrical signal-induced inhibition of photosynthesis is the dark reaction, whereas the inhibition of electron transport is only a consequence of reduced carboxylation efficiency. In addition, the study also provides valuable data confirming the hypothesis that chlorophyll a fluorescence is under electrochemical control.
منابع مشابه
Electrical signaling and photosynthesis: can they co-exist together?
Mechanical irritation of trigger hairs and subsequent generation of action potentials have significant impact on photosynthesis and respiration in carnivorous Venus flytrap (Dionaea muscipula). Action potential-mediated inhibition of photosynthesis and stimulation of respiration is confined only to the trap and was not recorded in adjacent photosynthetic lamina. We showed that the main primary ...
متن کاملTrap closure and prey retention in Venus flytrap (Dionaea muscipula) temporarily reduces photosynthesis and stimulates respiration.
BACKGROUND AND AIMS The carnivorous plant Venus flytrap (Dionaea muscipula) produces a rosette of leaves: each leaf is divided into a lower part called the lamina and an upper part, the trap, with sensory trigger hairs on the adaxial surface. The trap catches prey by very rapid closure, within a fraction of a second of the trigger hairs being touched twice. Generation of action potentials plays...
متن کاملGravity Affects the Closure of the Traps in Dionaea muscipula
Venus flytrap (Dionaea muscipula Ellis) is a carnivorous plant known for its ability to capture insects thanks to the fast snapping of its traps. This fast movement has been long studied and it is triggered by the mechanical stimulation of hairs, located in the middle of the leaves. Here we present detailed experiments on the effect of microgravity on trap closure recorded for the first time du...
متن کاملBiologically closed electrical circuits in venus flytrap.
The Venus flytrap (Dionaea muscipula Ellis) is a marvel of plant electrical, mechanical, and biochemical engineering. The rapid closure of the Venus flytrap upper leaf in about 0.1 s is one of the fastest movements in the plant kingdom. We found earlier that the electrical stimulus between a midrib and a lobe closes the Venus flytrap upper leaf without mechanical stimulation of trigger hairs. T...
متن کاملCharge induced closing of Dionaea muscipula Ellis trap.
In terms of bioelectrochemistry, Venus flytrap responses can be considered in three stages: stimulus perception, electrical signal transmission, and induction of mechanical and biochemical responses. When an insect touches the trigger hairs, these mechanosensors generate receptor potentials, which induce solitary waves activating the motor cells. We found that the electrical charge injected bet...
متن کامل