Repulsive Wnt signaling inhibits axon regeneration after CNS injury.
نویسندگان
چکیده
Failure of axon regeneration in the mammalian CNS is attributable in part to the presence of various inhibitory molecules, including myelin-associated proteins and proteoglycans enriched in glial scars. Here, we evaluate whether axon guidance molecules also regulate regenerative growth after injury in adulthood. Wnts are a large family of axon guidance molecules that can attract ascending axons and repel descending axons along the length of the developing spinal cord. Their expression (all 19 Wnts) is not detectable in normal adult spinal cord by in situ hybridization. However, three of them are clearly reinduced after spinal cord injury. Wnt1 and Wnt5a, encoding potent repellents of the descending corticospinal tract (CST) axons, were robustly and acutely induced broadly in the spinal cord gray matter after unilateral hemisection. Ryk, the conserved repulsive Wnt receptor, was also induced in the lesion area, and Ryk immunoreactivity was found on the lesioned CST axons. Wnt4, which attracts ascending sensory axons in development, was acutely induced in areas closer to the lesion than Wnt1 and Wnt5a. Injection of function-blocking Ryk antibodies into the dorsal bilateral hemisectioned spinal cord either prevented the retraction of CST axons or promoted their regrowth but clearly enhanced the sprouting of CST collateral branches around and beyond the injury site. Therefore, repulsive Wnt signaling may be a cause of cortical spinal tract axon retraction and inhibits axon sprouting after injury.
منابع مشابه
Wnt-Ryk signaling mediates axon growth inhibition and limits functional recovery after spinal cord injury.
Wnt proteins are a large family of diffusible factors that play important roles in embryonic development, including axis patterning, cell fate specification, proliferation, and axon development. It was recently demonstrated that Ryk (receptor related to tyrosine kinase) is a conserved high-affinity Wnt receptor, and that Ryk-Wnt interactions guide corticospinal axons down the spinal cord during...
متن کاملAxon guidance and injury-lessons from Wnts and Wnt signaling.
Many studies in the past decade have revealed the role and mechanisms of Wnt signaling in axon guidance during development and the reinduction of Wnt signaling in adult central nervous system axons upon traumatic injury, which has profound influences on axon regeneration. With 19 Wnts and 14 known receptors (10 Frizzleds (Fzds), Ryk, Ror1/2 and PTK7), the Wnt family signaling proteins contribut...
متن کاملRGMa inhibition promotes axonal growth and recovery after spinal cord injury
Repulsive guidance molecule (RGM) is a protein implicated in both axonal guidance and neural tube closure. We report RGMa as a potent inhibitor of axon regeneration in the adult central nervous system (CNS). RGMa inhibits mammalian CNS neurite outgrowth by a mechanism dependent on the activation of the RhoA-Rho kinase pathway. RGMa expression is observed in oligodendrocytes, myelinated fibers, ...
متن کاملWnt/β-catenin signaling promotes regeneration after adult zebrafish spinal cord injury.
Unlike mammals, zebrafish can regenerate their injured spinal cord and regain control of caudal tissues. It was recently shown that Wnt/β-catenin signaling is necessary for spinal cord regeneration in the larval zebrafish. However, the molecular mechanisms of regeneration may or may not be conserved between larval and adult zebrafish. To test this, we assessed the role of Wnt/β-catenin signalin...
متن کاملAbrogation of β-catenin signaling in oligodendrocyte precursor cells reduces glial scarring and promotes axon regeneration after CNS injury.
When the brain or spinal cord is injured, glial cells in the damaged area undergo complex morphological and physiological changes resulting in the formation of the glial scar. This scar contains reactive astrocytes, activated microglia, macrophages and other myeloid cells, meningeal cells, proliferating oligodendrocyte precursor cells (OPCs), and a dense extracellular matrix. Whether the scar i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 33 شماره
صفحات -
تاریخ انتشار 2008