User equilibrium traffic network assignment with stochastic travel times and late arrival penalty
نویسنده
چکیده
The classical Wardrop user equilibrium (UE) assignment model assumes traveller choices are based on fixed, known travel times, yet these times are known to be rather variable between trips, both within and between days; typically, then, only mean travel times are represented. Classical stochastic user equilibrium (SUE) methods allow the mean travel times to be differentially perceived across the population, yet in a conventional application neither the UE or SUE approach recognises the travel times to be inherently variable. That is to say, there is no recognition that drivers risk arriving late at their destinations, and that this risk may vary across different paths of the network and according to the arrival time flexibility of the traveller. Recent work on incorporating risky elements into the choice process is seen either to neglect the link to the arrival constraints of the traveller, or to apply only to restricted problems with parallel alternatives and inflexible travel time distributions. In the paper, an alternative approach is described based on the ‘schedule delay’ paradigm, penalising late arrival under fixed departure times. The approach allows flexible travel time densities, which can be fitted to actual surveillance data, to be incorporated. A generalised formulation of UE is proposed, termed a Late Arrival Penalised UE (LAPUE). Conditions for the existence and uniqueness of LAPUE solutions are considered, as well as methods for their computation. Two specific travel time models are then considered, one based on multivariate Normal arc travel times, and an extended model to represent arc incidents, based on mixture distributions of multivariate Normals. Several illustrative examples are used to examine the sensitivity of LAPUE solutions to various input parameters, and in particular its comparison with UE predictions. Finally, paths for further research are discussed, including the extension of the model to include elements such as distributed arrival time constraints and penalties.
منابع مشابه
Different Network Performance Measures in a Multi-Objective Traffic Assignment Problem
Traffic assignment algorithms are used to determine possible use of paths between origin-destination pairs and predict traffic flow in network links. One of the main deficiencies of ordinary traffic assignment methods is that in most of them one measure (mostly travel time) is usually included in objective function and other effective performance measures in traffic assignment are not considere...
متن کاملA Mean-Risk Model for the Stochastic Traffic Assignment Problem
Heavy and uncertain traffic conditions exacerbate the commuting experience of millions of people across the globe. When planning important trips, commuters typically add an extra buffer to the expected trip duration to ensure on-time arrival. Motivated by this, we propose a new traffic assignment model that takes into account the stochastic nature of travel times. Our model extends the traditio...
متن کاملOn Calibration and Application of Logit-Based Stochastic Traffic Assignment Models
There is a growing recognition that discrete choice models are capable of providing a more realistic picture of route choice behavior. In particular, influential factors other than travel time that are found to affect the choice of route trigger the application of random utility models in the route choice literature. This paper focuses on path-based, logit-type stochastic route choice models, i...
متن کاملA Mean-Risk Model for the Traffic Assignment Problem with Stochastic Travel Times
Heavy and uncertain traffic conditions exacerbate the commuting experience of millions of people across the globe. When planning important trips, commuters typically add an extra buffer to the expected trip duration to ensure on-time arrival. Motivated by this, we propose a new traffic assignment model that takes into account the stochastic nature of travel times. Our model extends the traditio...
متن کاملA Benders\' Decomposition Based Solution Method for Solving User Equilibrium Problem: Deterministic and Stochastic Cases
The traffic assignment problem is one of the most important problems for analyzing and optimizing the transportation network to find optimal flows. This study presented a new formulation based on a generalized Benders' decomposition approach to solve its important part, i.e. user equilibrium problems, in deterministic and stochastic cases. The new approach decomposed the problem into a master p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European Journal of Operational Research
دوره 175 شماره
صفحات -
تاریخ انتشار 2006