Growth cone form is behavior-specific and, consequently, position-specific along the retinal axon pathway.
نویسندگان
چکیده
Video time-lapse microscopy has made it possible to document growth cone motility during axon navigation in the intact brain. This approach prompted us to reanalyze the hypothesis, originally derived from observations of fixed tissue, that growth cone form is position-specific. The behaviors of Dil-labeled retinal axon growth cones were tracked from retina through the optic tract in mouse brain at embryonic day (E) 15-17, and these behaviors were matched with different growth cone forms. Patterns of behavior were then analyzed in the different locales from the retina through the optic tract. Throughout the pathway, episodes of advance were punctuated by pauses in extension. Irrespective of locale, elongated streamlined growth cones mediated advance and complex forms developed during pauses. The rate of advance and the duration of pauses were surprisingly similar in different parts of the pathway. In contrast, the duration of periods of advance was more brief in the chiasm compared to those in the optic nerve and tract. Consequently, in the chiasm, growth cones spent relatively more time pausing and less time advancing than in the optic nerve or tract. Thus, because growth cone form is behavior-specific and certain behaviors predominate in particular loci, growth cone form appears to be position-specific in static preparations, due to the fraction of time spent in a given state in different locales.
منابع مشابه
Growth cone form, behavior, and interactions in vivo: retinal axon pathfinding as a model.
Studies in vitro have revealed a great deal about growth cone behaviors, especially responses to guidance molecules, both positive and negative, and the signaling systems mediating these responses. Little, however, is known about these events as they take place in vivo. With new imaging methods, growth cone behaviors can be chronicled in the complex settings of intact or semi-intact systems. Wi...
متن کاملGrowth cone morphology varies with position in the developing mouse visual pathway from retina to first targets.
We have labeled the growth cones of retinal ganglion cell axons with HRP in intact mouse embryos. This has allowed us to visualize growth cone morphology during outgrowth along an entire CNS pathway from origin to target; to ask whether growth cone forms, and thus behaviors, differ at various points along the pathway; and to study the relationships of growth cones with the cellular environment....
متن کاملThe multiple decisions made by growth cones of RGCs as they navigate from the retina to the tectum in Xenopus embryos.
Retinal ganglion cells (RGCs) of Xenopus laevis send axons along a stereospecific pathway from the retina to their target the optic tectum. Viewed from the point of the growth cone, this journey is reflected by discrete processes of axon initiation, axon outgrowth, navigation, target recognition, and innervation. These processes are characterised by distinct signalling mechanisms that trigger d...
متن کاملA single-cell analysis of early retinal ganglion cell differentiation in Xenopus: from soma to axon tip.
Intracellular injections of Lucifer yellow (LY) were made into the cell bodies of Xenopus retinal ganglion cells from the earliest stages of axonogenesis to the beginning of target innervation. Embryos were intact during the injection so that the entire cell (cell body, dendrites, axon, and growth cone) could be visualized. The purpose of the study was 3-fold: (1) to characterize the early step...
متن کاملCannabinoid Receptor CB2 Modulates Axon Guidance
Navigation of retinal projections towards their targets is regulated by guidance molecules and growth cone transduction mechanisms. Here, we present in vitro and in vivo evidences that the cannabinoid receptor 2 (CB2R) is expressed along the retino-thalamic pathway and exerts a modulatory action on axon guidance. These effects are specific to CB2R since no changes were observed in mice where th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 3 شماره
صفحات -
تاریخ انتشار 1997