Harmonic Morphisms with One-dimensional Fibres
نویسنده
چکیده
We study harmonic morphisms by placing them into the context of conformal foli-ations. Most of the results we obtain hold for bres of dimension one and codomains of dimension not equal to two. We consider foliations which produce harmonic mor-phisms on both compact and noncompact Riemannian manifolds. By using integral formulae, we prove an extension to one-dimensional foliations which produce harmonic morphisms of the well-known result of S. Bochner concerning Killing elds on compact Riemannian manifolds with nonpositive Ricci curvature. From the noncompact case, we improve a result of R. L. Bryant 9] regarding harmonic morphisms with one-dimensional bres deened on Riemannian manifolds of dimension at least four with constant sectional curvature. Our method gives an entirely new and geometrical proof of Bryant's result. The concept of homothetic foliation (or, more generally, homothetic distribution) which we introduce, appears as a useful tool both in proofs and in providing new examples of harmonic morphisms, with bres of any dimension.
منابع مشابه
New Results on Harmonic Morphisms with One-dimensional Fibres
We survey some recent results on harmonic morphisms with one-dimensional fibres.
متن کاملHarmonic Morphisms with One-dimensional Fibres on Conformally-flat Riemannian Manifolds
We classify the harmonic morphisms with one-dimensional fibres (1) from real-analytic conformally-flat Riemannian manifolds of dimension at least four, and (2) between conformally-flat Riemannian manifolds of dimensions at least three.
متن کاملTwistorial Harmonic Morphisms with One-dimensional Fibres on Self-dual Four-manifolds
We classify twistorial harmonic morphisms with one-dimensional fibres from self-dual four-manifolds. Along the way, we find two new constructions of
متن کاملHarmonic Morphisms with 1-dim Fibres on 4-dim Einstein Manifolds
Harmonic morphisms are smooth maps between Riemannian manifolds which preserve Laplace's equation. They are characterised as harmonic maps which are horizontally weakly conformal 14, 20]. R.L. Bryant 7] proved that there are precisely two types of harmonic morphisms with one-dimensional bres which can be deened on a constant curvature space of dimension at least four. Here we prove that, on an ...
متن کاملHarmonic Morphisms with One-dimensional Fibres on Einstein Manifolds
We prove that, from an Einstein manifold of dimension greater than or equal to five, there are just two types of harmonic morphism with one-dimensional fibres. This generalizes a result of R.L. Bryant who obtained the same conclusion under the assumption that the domain has constant curvature.
متن کاملHarmonic Morphisms between Riemannian Manifolds
Harmonic morphisms are mappings between Riemannian manifolds which preserve Laplace’s equation. They can be characterized as harmonic maps which enjoy an extra property called horizontal weak conformality or semiconformality. We shall give a brief survey of the theory concentrating on (i) twistor methods, (ii) harmonic morphisms with one-dimensional fibres; in particular we shall outline the co...
متن کامل