The Internal Energy for Molecular Hydrogen in Gravitationally Unstable Protoplanetary Disks
نویسندگان
چکیده
The gas equation of state may be one of the critical factors for the disk instability theory of gas giant planet formation. This letter addresses the treatment of H2 in hydrodynamical simulations of gravitationally unstable disks. In our discussion, we point out possible consequences of erroneous specific internal energy relations, approximate specific internal energy relations with discontinuities, and assumptions of constant Γ1. In addition, we consider whether the ortho/para ratio for H2 in protoplanetary disks should be treated dynamically as if the species are in equilibrium. Preliminary simulations indicate that the correct treatment is particularly critical for the study of gravitational instability when T = 30-50 K. Subject headings: equation of state – hydrodynamics – instabilities – molecular processes – planetary systems: protoplanetary disks
منابع مشابه
Fragmentation of Gravitationally Unstable Gaseous Protoplanetary Disks with Radiative Transfer
We report on the results of the first 3D SPH simulation of massive, gravitationally unstable protoplanetary disks with radiative transfer. We adopt a flux-limited diffusion scheme justified by the high opacity of most of the disk. The optically thin surface of the disk cools as a blackbody. The disks grow slowly in mass starting from a Toomre-stable initial condition to the point at which they ...
متن کاملCan Giant Planets Form by Direct Gravitational Instability?
Gravitational instability has been invoked as a possible mechanism of giant planet formation in protoplanetary disks. Here we critically revise its viability by noting that for the direct production of giant planets it is not enough for protoplanetary disks to be gravitationally unstable. They must also be able to cool efficiently (on a timescale comparable to the local disk orbital period) to ...
متن کاملMolecular hydrogen emission from protoplanetary disks
We have modeled self-consistently the density and temperature profiles of gas and dust in protoplanetary disks, taking into account irradiation from a central star. Making use of this physical structure, we have calculated the level populations of molecular hydrogen and the line emission from the disks. As a result, we can reproduce the observed strong line spectra of molecular hydrogen from pr...
متن کاملDust Size Growth and Settling in a Protoplanetary Disk
We have studied dust evolution in a quiescent or turbulent protoplanetary disk by numerically solving coagulation equation for settling dust particles, using the minimum mass solar nebular model. As a result, if we assume an ideally quiescent disk, the dust particles settle toward the disk midplane to form a gravitationally unstable layer within 2× 103–4× 10yr at 1–30 AU, which is in good agree...
متن کاملThe evolution of gravitationally unstable protoplanetary disks: fragmentation and possible giant planet formation
We carry out a large set of very high resolution, three dimensional smoothed particle hydrodynamics (SPH) simulations describing the evolution of gravitationally unstable gaseous protoplanetary disks. We consider a broad range of initial disk parameters. Disk masses out to 20 AU range from 0.075 to 0.125 M⊙, roughly consistent with the high-end of the mass distribution inferred for disks around...
متن کامل