A combined three-dimensional in vitro–in silico approach to modelling bubble dynamics in decompression sickness
نویسندگان
چکیده
The growth of bubbles within the body is widely believed to be the cause of decompression sickness (DCS). Dive computer algorithms that aim to prevent DCS by mathematically modelling bubble dynamics and tissue gas kinetics are challenging to validate. This is due to lack of understanding regarding the mechanism(s) leading from bubble formation to DCS. In this work, a biomimetic in vitro tissue phantom and a three-dimensional computational model, comprising a hyperelastic strain-energy density function to model tissue elasticity, were combined to investigate key areas of bubble dynamics. A sensitivity analysis indicated that the diffusion coefficient was the most influential material parameter. Comparison of computational and experimental data revealed the bubble surface's diffusion coefficient to be 30 times smaller than that in the bulk tissue and dependent on the bubble's surface area. The initial size, size distribution and proximity of bubbles within the tissue phantom were also shown to influence their subsequent dynamics highlighting the importance of modelling bubble nucleation and bubble-bubble interactions in order to develop more accurate dive algorithms.
منابع مشابه
Human Decompression Modelling
At present, no decompression algorithm is able to predict safe decompression for all dive scenarios. In practice, empirical adjustments are made by experienced organisations or divers in order to improve decompression profiles for the range of depths and durations needed on any particular dive. Bubble formation and growth in the human body are the fundamental causes of decompression sickness, a...
متن کاملMathematical models of diffusion-limited gas bubble dynamics in tissue.
Mathematical models of bubble evolution in tissue have recently been incorporated into risk functions for predicting the incidence of decompression sickness (DCS) in human subjects after diving and/or flying exposures. Bubble dynamics models suitable for these applications assume the bubble to be either contained in an unstirred tissue (two-region model) or surrounded by a boundary layer within...
متن کاملNumerical Simulation of Flash Boiling Effect in a 3-Dimensional Chamber Using CFD Techniques
Flash Boiling atomization is one of the most effective means of generating a fine and narrow-dispersed spray. Unless its complexity its potential has not been fully realized. In This Paper, a three dimensional chamber has been modeled with a straight fuel injector. Effect of Flash Boiling has been investigated by computational fluid dynamics (CFD) techniques. A finite volume approach with the ...
متن کاملEffect of oxygen breathing and perfluorocarbon emulsion treatment on air bubbles in adipose tissue during decompression sickness.
Decompression sickness (DCS) after air diving has been treated with success by means of combined normobaric oxygen breathing and intravascular perfluorocarbon (PFC) emulsions causing increased survival rate and faster bubble clearance from the intravascular compartment. The beneficial PFC effect has been explained by the increased transport capacity of oxygen and inert gases in blood. However, ...
متن کاملCFD Hydrodynamics Analysis of Syngas Flow in Slurry Bubble Column
In this paper, a CFD model of syngas flow in slurry bubble column was developed. The model is based on an Eulerian-Eulerian approach and includes three phases: slurry of solid particles suspended in paraffin oil and syngas bubbles. Numerical calculations carried out for catalyst particles, bubble coalescence and breakup included bubble-fluid drag force and interfacial area effects. Also, the ef...
متن کامل