Production Technology for Passivation of Polycrystalline Silicon Solar Cells

نویسندگان

  • Julio A. Bragagnolo
  • Bhushan Sopori
  • Tohru Hashimoto
  • Ichiro Sugiyama
چکیده

Techniques for cost-efficient operation of SiNx:H systems with a capability for hydrogen passivation in a manufacturing environment are analyzed. We conclude that SiNx:H performance may be optimized by a variety of techniques, and that the cost and productivity of the deposition tool may be the determining factors in the industry’s decision for a particular technique. PECVD constitutes the current benchmark. Dual magnetron reactive sputtering is a candidate to achieve industry acceptance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study the Effect of Silicon Nanowire Length on Characteristics of Silicon Nanowire Based Solar Cells by Using Impedance Spectroscopy

Silicon nanowire (SiNW) arrays were produced by electroless method on polycrystalline Si substrate, in HF/ AgNO3 solution. Although the monocrystalline silicon wafer is commonly utilized as a perfect substrate, polycrystalline silicon as a low cost substrate was used in this work for photovoltaic applications. In order to study the influence of etching time (which affects the SiNWs length) on d...

متن کامل

Influence and passivation of extended crystallographic defects in polycrystalline silicon

2014 Influence and passivation of extended crystallographic defects are investigated in large grained polycrystalline silicon wafers and N+ P solar cells. When the mean grain size exceeds 1 mm, the influence of intragrain defects becomes predominant. It was found that the defects have not by themselves a noticeable recombination activity and that the segregation of impurities (oxygen...), could...

متن کامل

Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency.

The nanostructuring of silicon surfaces--known as black silicon--is a promising approach to eliminate front-surface reflection in photovoltaic devices without the need for a conventional antireflection coating. This might lead to both an increase in efficiency and a reduction in the manufacturing costs of solar cells. However, all previous attempts to integrate black silicon into solar cells ha...

متن کامل

EFFECTIVE PASSIVATION OF THE LOW RESISTIVITY SILICON SllRFACE BY A RAPID THERMAL OXIDE/PECVD SILICON NITRIDE STACK AND ITS APPLICATION TO PASSIVATED REAR AND BIFACIAL SI SOLAR CELLS

A novel stack passivation scheme, in which plasma silicon nitride (SiN) is stacked on top of a rapid thennal SiO? (RTO) layer, is developed to attain a surface recombination velocity (S) approaching 10 em/s at the L3 O-cm p-typc (l00) silicon surfaee_ Such low S is achieved by the stack cven when the RTO and SiN films "I<ilvldllally yield considerably poorer surface passivation. Critical to ach...

متن کامل

Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells

The reduction in electronic recombination losses by the passivation of silicon surfaces is a critical enabler for high-efficiency solar cells. In 2006, aluminum oxide (Al2O3) nanolayers synthesized by atomic layer deposition (ALD) emerged as a novel solution for the passivation of pand n-type crystalline Si (c-Si) surfaces. Today, high efficiencies have been realized by the implementation of ul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004