Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities
نویسندگان
چکیده
[1] Hydraulic tomography, a procedure involving the performance of a suite of pumping tests in a tomographic format, provides information about variations in hydraulic conductivity at a level of detail not obtainable with traditional well tests. However, analysis of transient data from such a suite of pumping tests represents a substantial computational burden. Although steady state responses can be analyzed to reduce this computational burden significantly, the time required to reach steady state will often be too long for practical applications of the tomography concept. In addition, uncertainty regarding the mechanisms driving the system to steady state can propagate to adversely impact the resulting hydraulic conductivity estimates. These disadvantages of a steady state analysis can be overcome by exploiting the simplifications possible under the steady shape flow regime. At steady shape conditions, drawdown varies with time but the hydraulic gradient does not. Thus transient data can be analyzed with the computational efficiency of a steady state model. In this study, we demonstrate the value of the steady shape concept for inversion of hydraulic tomography data and investigate its robustness with respect to improperly specified boundary conditions.
منابع مشابه
A field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities
[1] Hydraulic tomography is a promising approach for obtaining information on variations in hydraulic conductivity on the scale of relevance for contaminant transport investigations. This approach involves performing a series of pumping tests in a format similar to tomography. We present a field-scale assessment of hydraulic tomography in a porous aquifer, with an emphasis on the steady shape a...
متن کاملAquifer heterogeneity characterization with oscillatory pumping: Sensitivity analysis and imaging potential
[1] Periodic pumping tests, in which a fluid is extracted during half a period, then reinjected, have been used historically to estimate effective aquifer properties. In this work, we suggest a modified approach to periodic pumping test analysis in which one uses several periodic pumping signals of different frequencies as stimulation, and responses are analyzed through inverse modeling using a...
متن کاملA potential-based inversion of unconfined steady-state hydraulic tomography.
The importance of estimating spatially variable aquifer parameters such as transmissivity is widely recognized for studies in resource evaluation and contaminant transport. A useful approach for mapping such parameters is inverse modeling of data from series of pumping tests, that is, via hydraulic tomography. This inversion of field hydraulic tomographic data requires development of numerical ...
متن کاملAnalytical and Semi-Analytical Tools for the Design of Oscillatory Pumping Tests.
Oscillatory pumping tests-in which flow is varied in a periodic fashion-provide a method for understanding aquifer heterogeneity that is complementary to strategies such as slug testing and constant-rate pumping tests. During oscillatory testing, pressure data collected at non-pumping wells can be processed to extract metrics, such as signal amplitude and phase lag, from a time series. These me...
متن کاملWhy hydraulic tomography works?
Head measurements at a single observation well during a cross-hole pumping test carry a great amount of information about aquifer heterogeneity other than the average property of the aquifer as implied in Theis analysis of aquifer test. In this commentary, we use simple examples and a probabilistic reasoning approach based on Darcy’s law to unravel this information, buried in the results of qua...
متن کامل