Recursive Bayesian Estimation for Respiratory Motion Correction in Nuclear Medicine
نویسندگان
چکیده
Respiratory motion correction degrades quantitatively and qualitatively Nuclear Medicine images. We propose that adaptive approaches are required to correct for the irregular breathing patterns often encountered in the clinical setting, which can be addressed within a Bayesian tracking formulation. This allows inference of the hidden organ configurations using only knowledge of an external observation such as a parametrized external surface. The flexible framework described provides a method to correct for organ motion whilst accommodating for irregular unseen respiratory patterns. In this work we utilize a Kalman filter and compare it with a Particle filter. A novel adaptive state transition model is also introduced to describe the evolution of organ configurations. The Kalman filter marginally outperforms the Particle filter, both approaches however offer an effective motion correction mechanism, correcting for motion with errors of around 1-3mm. We present results of simulated PET images derived from XCAT to demonstrate the efficacy of the approach.
منابع مشابه
Recursive Bayesian estimation of respiratory motion using a modified autoregressive transition model
Compensation for respiratory motion has been identified as a crucial factor in achieving high resolution Nuclear Medicine (NM) imaging. Many motion correction approaches have been studied and they are seen to have advantages over simpler approaches such as respiratory gating. However, all motion correction approaches rely on an assumption or estimation of respiratory motion. This paper builds u...
متن کاملAdvanced Motion Correction Methods in PET
With the arrival of increasingly higher resolution PET systems, small amounts of motion can cause significant blurring in the images, compared to the intrinsic resolutions of the scanners. In this work, we have reviewed advanced correction methods for the three cases of (i) unwanted patient motion, as well as motions due to (ii) cardiac and (iii) respiratory cycles. For the first type of ...
متن کاملImpact of PET - CT motion correction in minimising the gross tumour volume in non-small cell lung cancer
AbstractObjective: To investigate the impact of respiratory motion on localization, and quantification lung lesions for the Gross Tumour Volume utilizing an in-house developed Auto3Dreg programme and dynamic NURBS-based cardiac-torso digitised phantom (NCAT). Methods: Respiratory motion may result in more than 30% underestimation of the SUV values of lung, liver and kidney tumour lesions. The m...
متن کاملReducing the respiratory motion artifacts in PET cardiology: A simulation study
Introduction: There are several technical features that make PET an ideal device for the noninvasive evaluation of cardiac physiology. Organ motion due to respiration is a major challenge in diagnostic imaging, especially in cardiac PET imaging. These motions reduce image quality by spreading the radiotracer activity over an increased volume, distorting apparent les...
متن کاملA new approach to scatter correction in SPECT images based on Klein_Nishina equation
Introduction: Scattered photon is one of the main defects that degrade the quality and quantitative accuracy of nuclear medicine images. Accurate estimation of scatter in projection data of SPECT is computationally extremely demanding for activity distribution in uniform and non-uniform dense media. Methods: The objective of this paper is to develop and validate a scatter correction technique ...
متن کامل