Fabrication of thick silicon dioxide sacrificial and isolation blocks in a silicon substrate
نویسندگان
چکیده
A silicon micromachining method that is able to create deep silicon dioxide blocks at selected locations in a silicon substrate is presented. The process combines deep-reactive-ion etching (DRIE), thermal oxidation, deposition of silicon dioxide and optional planarization. Design issues and parameters for the creation of such blocks are discussed. The selectively defined silicon dioxide blocks allow the integration of silicon surface and bulk micromachining and thick large-area isolation regions for integrated circuits. The performance enhancement that this approach enables is exemplified in the fabrication of an on-chip tunable capacitor and a monolithic transformer on 20-μm-deep silicon dioxide blocks.
منابع مشابه
Fabrication and Characterization of a New MEMS Capacitive Microphone using Perforated Diaphragm
In this paper, a novel single-chip MEMS capacitive microphone is presented. The novelties of this method relies on the moveable aluminum (Al) diaphragm positioned over the backplate electrode, where the diaphragm includes a plurality of holes to allow the air in the gap between the electrode and diaphragm to escape and thus reduce acoustical damping in the microphone. Spin-on-glass (SOG) was us...
متن کاملFabrication and Optical Characterization of Silicon Nanostructure Arrays by Laser Interference Lithography and Metal-Assisted Chemical Etching
In this paper metal-assisted chemical etching has been applied to pattern porous silicon regions and silicon nanohole arrays in submicron period simply by using positive photoresist as a mask layer. In order to define silicon nanostructures, Metal-assisted chemical etching (MaCE) was carried out with silver catalyst. Provided solution (or materiel) in combination with laser interference lithogr...
متن کاملSurface Micromachining for Microelectromechanical Systems
Surface micromachining is characterized by the fabrication of micromechanical structures from deposited thin films. Originally employed for integrated circuits, films composed of materials such as low-pressure chemical-vapor-deposition polycrystalline silicon, silicon nitride, and silicon dioxides can be sequentially deposited and selectively removed to build or “machine” three-dimensional stru...
متن کاملCharacterization of high-Q spiral inductors on thick insulator-on-silicon
Abstract This paper reports on the fabrication and characterization of high quality factor (Q) copper (Cu) inductors with thick insulator on standard silicon (Si) substrate (ρ = 10–20 cm). The thickness and the area of the insulating layer are optimized for high Q by fabricating inductors on very thick (∼50 μm) embedded silicon dioxide (SiO2) islands and 4–20 μm thick PECVD SiO2 coated standard...
متن کاملFabrication of thick silicon nitride blocks embedded in low-resistivity silicon substrates for radio frequency applications
Thick silicon nitride blocks embedded in silicon wafers were recently proposed as a substrate for RF devices. In this paper we show that deep trenches filled with silicon nitride—having thin slices of monocrystalline silicon in between—already result in a significantly improved RF behavior. Measurement results are presented on RF coplanar waveguides using solid silicon nitride blocks and silico...
متن کامل