Temperature‐Responsive Luminescent Solar Concentrators: Tuning Energy Transfer in a Liquid Crystalline Matrix
نویسندگان
چکیده
Temperature-responsive luminescent solar concentrators (LSCs) have been fabricated in which the Förster resonance energy transfer (FRET) between a donor-acceptor pair in a liquid crystalline solvent can be tuned. At room temperatures, the perylene bisimide (PBI) acceptor is aggregated and FRET is inactive; while after heating to a temperature above the isotropic phase of the liquid crystal solvent, the acceptor PBI completely dissolves and FRET is activated. This unusual temperature control over FRET was used to design a color-tunable LSC. The device has been shown to be highly stable towards consecutive heating and cooling cycles, making it an appealing device for harvesting otherwise unused solar energy.
منابع مشابه
Efficient light harvesting of a luminescent solar concentrator using excitation energy transfer from an aggregation-induced emitter.
The compromise between light absorption and reabsorption losses limits the potential light conversion efficiency of luminescent solar concentrators (LSCs). Current approaches do not fully address both issues. By using the excitation energy transfer (EET) strategy with a donor chromophore that exhibits aggregation-induced emission (AIE) behaviour, it is shown that both transmission and reabsorpt...
متن کاملSpectral Converters and Luminescent Solar Concentrators
In this paper we present a comprehensive theoretical description of molecular spectral converters in the specific context of Luminescent Solar Concentrators (LSCs). The theoretical model is an extension to a three-level system interacting with a solar radiation bath of the standard quantum theory of atomic radiative processes. We derive the equilibrium equations of the conversion process and pr...
متن کاملSemiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting
We compare the performance of luminescent solar concentrators LSCs fabricated with polymers and quantum dots to the behavior of laser dye LSCs. Previous research, centered around the use of small molecule laser dyes, was hindered by the lack of materials with small absorption/emission band overlap and longer lifetime. Materials such as semiconducting polymers and quantum dots present qualities ...
متن کاملStar-shaped fluorene–BODIPY oligomers: versatile donor–acceptor systems for luminescent solar concentrators†‡
Luminescent solar concentrators (LSCs) are waveguides doped with luminescent centers that can spectrally and spatially concentrate sunlight. They can reduce the cost of photovoltaic energy production and are attractive prospects for photobioreactors and building-integrated applications. Reabsorption, caused by non-zero overlap between the absorption and emission spectra of the light-emitting ce...
متن کاملCylindrical luminescent solar concentrators with near-infrared quantum dots.
We investigate the performance of cylindrical luminescent solar concentrators (CLSCs) with near-infrared lead sulfide quantum dots (QDs) in the active region. We fabricate solid and hollow cylinders from a composite of QDs in polymethylmethacrylate, prepared by radical polymerization, and characterize sample homogeneity and optical properties using spectroscopic techniques. We additionally meas...
متن کامل