Distribution and chemical coding of neurons in intramural ganglia of the porcine urinary bladder trigone.
نویسنده
چکیده
This study presents the distribution and chemical coding of neurons in the porcine intramural ganglia of the urinary bladder trigone (IG-UBT) demonstrated using combined retrograde tracing and double-labelling immunohistochemistry. Retrograde fluorescent tracer Fast Blue (FB) was injected into the wall of both the left and right side of the bladder trigone during laparotomy performed under pentobarbital anaesthesia. Ten-microm-thick cryostat sections were processed for double-labelling immunofluorescence with antibodies against tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), neuropeptide Y (NPY), somatostatin (SOM), galanin (GAL), vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), calcitonin gene-related peptide (CGRP), substance P (SP), Leu5-enkephalin (LENK) and choline acetyltransferase (ChAT). IG-UBT neurons formed characteristic clusters (from a few to tens neuronal cells) found under visceral peritoneum or in the outer muscular layer. Immunohistochemistry revealed four main populations of IG-UBT neurons: SOM- (ca. 35%), SP- (ca. 32%), ChAT- and NPY- immunoreactive (-IR) (ca. 23%) as well as non-adrenergic non-cholinergic nerve cells (ca. 6%). This study has demonstrated a relatively large population of differently coded IG-UBT neurons, which constitute an important element of the complex neuro-endocrine system involved in the regulation of the porcine urogenital organ function.
منابع مشابه
Immunohistochemical characteristics and distribution of neurons in the intramural ganglia supplying the urinary bladder in the male pig.
This study investigated the distribution and chemical coding of neurons in intramural ganglia of the urinary bladder trigone (UBT-IG) and cervix (UBC-IG) in the male pig using combined retrograde tracing and double-labelling immunohistochemistry. Additionally, immunoblotting was used to confirm the presence of marker enzymes for main populations of autonomic neurons. Retrograde fluorescent trac...
متن کاملThe Influence of Tetrodotoxin (TTX) on the Distribution and Chemical Coding of Caudal Mesenteric Ganglion (CaMG) Neurons Supplying the Porcine Urinary Bladder
The treatment of micturition disorders creates a serious problem for urologists. Recently, new therapeutic agents, such as neurotoxins, are being considered for the therapy of urological patients. The present study investigated the chemical coding of caudal mesenteric ganglion (CaMG) neurons supplying the porcine urinary bladder after intravesical instillation of tetrodotoxin (TTX). The CaMG ne...
متن کاملLocalization of Peripheral Autonomic Neurons Innervating the Boar Urinary Bladder Trigone and Neurochemical Features of the Sympathetic Component
The urinary bladder trigone (UBT) is a limited area through which the majority of vessels and nerve fibers penetrate into the urinary bladder and where nerve fibers and intramural neurons are more concentrated. We localized the extramural post-ganglionic autonomic neurons supplying the porcine UBT by means of retrograde tracing (Fast Blue, FB). Moreover, we investigated the phenotype of sympath...
متن کاملConantokin G-induced changes in the chemical coding of dorsal root ganglion neurons supplying the porcine urinary bladder.
Conantokin G (CTG), isolated from the venom of the marine cone snail Conus geographus, is an antagonist of N-methyl-d-aspartate receptors (NMDARs), the activation of which, especially those located on the central afferent terminals and dorsal horn neurons, leads to hypersensitivity and pain. Thus, CTG blocking of NMDARs, has an antinociceptive effect, particularly in the case of neurogenic pain...
متن کاملBotulinum toxin type A-induced changes in the chemical coding of dorsal root ganglion neurons supplying the porcine urinary bladder.
Botulinum toxin type A (BTX) is a potent neurotoxin, which in recent years has been effectively applied in experimental treatments of many neurogenic disorders of the urinary bladder. BTX is a selective, presynaptically-acting blocking agent of acetylcholine release from nerve terminals what, in turn, leads to the cessation of somatic motor and/or parasympathetic transmission. However, applicat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Folia histochemica et cytobiologica
دوره 42 1 شماره
صفحات -
تاریخ انتشار 2004