Engineered Saccharomyces cerevisiae strain for improved xylose utilization with a three-plasmid SUMO yeast expression system.
نویسندگان
چکیده
A three-plasmid yeast expression system utilizing the portable small ubiquitin-like modifier (SUMO) vector set combined with the efficient endogenous yeast protease Ulp1 was developed for production of large amounts of soluble functional protein in Saccharomyces cerevisiae. Each vector has a different selectable marker (URA, TRP, or LEU), and the system provides high expression levels of three different proteins simultaneously. This system was integrated into the protocols on a fully automated plasmid-based robotic platform to screen engineered strains of S. cerevisiae for improved growth on xylose. First, a novel PCR assembly strategy was used to clone a xylose isomerase (XI) gene into the URA-selectable SUMO vector and the plasmid was placed into the S. cerevisiae INVSc1 strain to give the strain designated INVSc1-XI. Second, amino acid scanning mutagenesis was used to generate a library of mutagenized genes encoding the bioinsecticidal peptide lycotoxin-1 (Lyt-1) and the library was cloned into the TRP-selectable SUMO vector and placed into INVSc1-XI to give the strain designated INVSc1-XI-Lyt-1. Third, the Yersinia pestis xylulokinase gene was cloned into the LEU-selectable SUMO vector and placed into the INVSc1-XI-Lyt-1 yeast. Yeast strains expressing XI and xylulokinase with or without Lyt-1 showed improved growth on xylose compared to INVSc1-XI yeast.
منابع مشابه
CLONING AND EXPRESSION OF HUMAN IFNα2B GENE IN SACCHAROMYCES CEREVISIAE
Interferon is a protein secreted by eucaryotic cells following stimulation by viruses, bacteria, and many other immunogenes. Recent medical studies indicate that interferons have effective role in the treatment of virus infections, immunodeficiency and certain types of cancer such as hairy cell leukaemia (HCL). The aim of the present study is to apply yeast strain for secreting human IFNα2b fol...
متن کاملDirected evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae.
The heterologous expression of a highly functional xylose isomerase pathway in Saccharomyces cerevisiae would have significant advantages for ethanol yield, since the pathway bypasses cofactor requirements found in the traditionally used oxidoreductase pathways. However, nearly all reported xylose isomerase-based pathways in S. cerevisiae suffer from poor ethanol productivity, low xylose consum...
متن کاملIncreased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase.
Baker's yeast (Saccharomyces cerevisiae) has been genetically engineered to ferment the pentose sugar xylose present in lignocellulose biomass. One of the reactions controlling the rate of xylose utilization is catalyzed by xylose reductase (XR). In particular, the cofactor specificity of XR is not optimized with respect to the downstream pathway, and the reaction rate is insufficient for high ...
متن کاملDevelopment of a GIN11/FRT-based multiple-gene integration technique affording inhibitor-tolerant, hemicellulolytic, xylose-utilizing abilities to industrial Saccharomyces cerevisiae strains for ethanol production from undetoxified lignocellulosic hemicelluloses
BACKGROUND Bioethanol produced by the yeast Saccharomyces cerevisiae is currently one of the most promising alternatives to conventional transport fuels. Lignocellulosic hemicelluloses obtained after hydrothermal pretreatment are important feedstock for bioethanol production. However, hemicellulosic materials cannot be directly fermented by yeast: xylan backbone of hemicelluloses must first be ...
متن کاملNovel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains.
Lignocellulosic feedstocks are thought to have great economic and environmental significance for future biotechnological production processes. For cost-effective and efficient industrial processes, complete and fast conversion of all sugars derived from these feedstocks is required. Hence, simultaneous or fast sequential fermentation of sugars would greatly contribute to the efficiency of produ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plasmid
دوره 61 1 شماره
صفحات -
تاریخ انتشار 2009