VdNUC-2, the Key Regulator of Phosphate Responsive Signaling Pathway, Is Required for Verticillium dahliae Infection

نویسندگان

  • Sheng Deng
  • Cai-yue Wang
  • Xin Zhang
  • Qing Wang
  • Ling Lin
  • Richard A Wilson
چکیده

In fungal cells, a phosphate (Pi) responsive signaling and metabolism (PHO) pathway regulates Pi-homeostasis. NUC-2/PHO81 and its homologs are one of the most important components in the regulation pathway. In soil-borne phytopathogenic fungus Verticillium dahliae, we identified a Neurospora crassa nuc-2 homolog gene VdNUC-2. VdNUC-2 is composed of 1,018 amino acids, and is highly conserved in tested filamentous fungi. Under conditions of Pi-starvation, compared with the wild-type strain and ectopic complementation strains, the VdNUC-2 knocked out mutants exhibited reduced radial growth, decreased production of conidia and microsclerotia, and were more sensitive to hydrogen peroxide stress. The virulence of VdNUC-2 defective mutants was significantly compromised, and that was unable to be restored by exogenous application of extra Pi. Additionally, the deletion mutants of VdNUC-1, a key transcription factor gene positively controlled by VdNUC-2 in the PHO pathway, showed the similar cultural phenotypes as VdNUC-2 mutants when both of them grew in Pi-limited conditions. However, the virulence of VdNUC-1 mutants was comparable to the wild-type strain. These evidences indicated that the virulence reduction in VdNUC-2 mutants is not due to the interruptions in the PHO pathway or the disturbance of Pi-homeostasis in V. dahliae cytoplasm. VdNUC-2 is not only a crucial gene in the PHO pathway in V. dahliae, but also is required for the full virulence during host-infection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gbvdr6, a Gene Encoding a Receptor-Like Protein of Cotton (Gossypium barbadense), Confers Resistance to Verticillium Wilt in Arabidopsis and Upland Cotton

Verticillium wilt is a soil-borne disease that can cause devastating losses in cotton production. Because there is no effective chemical means to combat the disease, the only effective way to control Verticillium wilt is through genetic improvement. Therefore, the identification of additional disease-resistance genes will benefit efforts toward the genetic improvement of cotton resistance to Ve...

متن کامل

MADS-Box Transcription Factor VdMcm1 Regulates Conidiation, Microsclerotia Formation, Pathogenicity, and Secondary Metabolism of Verticillium dahliae

Verticillium dahliae, a notorious phytopathogenic fungus, causes vascular wilt diseases in many plant species resulting in devastating yield losses worldwide. Due to its ability to colonize plant xylem and form microsclerotia, V. dahliae is highly persistent and difficult to control. In this study, we show that the MADS-box transcription factor VdMcm1 is a key regulator of conidiation, microscl...

متن کامل

Large-scale identification of Gossypium hirsutum genes associated with Verticillium dahliae by comparative transcriptomic and reverse genetics analysis

Verticillium wilt is a devastating disease of cotton, which is caused by the soil-borne fungus Verticillium dahliae (V. dahliae). Although previous studies have identified some genes or biological processes involved in the interaction between cotton and V. dahliae, its underlying molecular mechanism remains unclear, especially in G. hirsutum. In the present study, we obtained an overview of tra...

متن کامل

The Mitogen-Activated Protein Kinase Kinase VdPbs2 of Verticillium dahliae Regulates Microsclerotia Formation, Stress Response, and Plant Infection

Verticillium dahliae, a ubiquitous phytopathogenic fungus, forms resting structures, known as microsclerotia that play crucial roles in Verticillium wilt diseases. VdHog1, a mitogen-activated protein kinase (MAPK), controls microsclerotia formation, virulence, and stress response in V. dahliae. In this study, we present detailed evidence that the conserved upstream component of VdHog1, VdPbs2, ...

متن کامل

Transcriptome analysis of the compatible interaction of tomato with Verticillium dahliae using RNA-sequencing

Tomato Verticillium wilt is a soil-borne vascular disease caused by the necrotrophic fungus Verticillium dahliae. Although some understanding of plant defense mechanisms against V. dahliae infection has been gained for incompatible interactions, including identification of inducible resistant genes and defense signaling pathways, the genes and signaling pathways involved in the compatible inter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015