Interactive Extraction of 3D Trees from Medical Images Supporting Gaming and Crowdsourcing
نویسنده
چکیده
Analysis of vascular and airway trees of circulatory and respiratory systems is important for a wide range of clinical applications. Automatic segmentation of these tree-like structures from 3D image data remains challenging due to complex branching patterns, geometrical diversity, and pathology. Existing automated techniques are sensitive to parameters setting, may leak into nearby structures, or miss true bifurcating branches; while interactive methods for segmenting vascular trees are hard to design and use, making them impractical to extend to 3D and to vascular trees with many branches (e.g., tens or hundreds). We propose SwifTree, an interactive software to facilitate this tree extraction task while exploring crowdsourcing and gamification. Our experiments demonstrate that: (i) aggregating the results of multiple SwifTree crowdsourced sessions can achieve more accurate segmentation; (ii) using the proposed game-mode can reduce time needed to achieve a pre-set tree segmentation accuracy; and (iii) SwifTree outperforms automatic segmentation methods especially with respect to noise robustness.
منابع مشابه
SwifTree: Interactive Extraction of 3D Trees Supporting Gaming and Crowdsourcing
Analysis of vascular and airway trees of circulatory and respiratory systems is important for many clinical applications. Automatic segmentation of these tree-like structures from 3D data remains an open problem due to their complex branching patterns, geometrical diversity, and pathology. On the other hand, it is challenging to design intuitive interactive methods that are practical to use in ...
متن کاملExtraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images
Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...
متن کاملEstimation of Tree Biomass at Individual tree, Sample plot and Hybrid Level using Drone Images
Two-dimensional image conversion algorithms to 3D data create the hope that the structural properties of trees can be extracted through these images. In this study, the accuracy of biomass estimation in tree, plot, and hybrid levels using UAVs images was investigated. In 34.8 ha of Sisangan Forest Park, using a quadcopter, 854 images from an altitude of 100 meters above ground were acquired. SF...
متن کاملGlobally-Optimal Anatomical Tree Extraction from 3D Medical Images Using Pictorial Structures and Minimal Paths
Extracting centerlines of anatomical trees (e.g., vasculature and airways) from 3D medical images is a crucial preliminary step for various medical applications. We propose an automatic tree extraction method that leverages prior knowledge of tree topology and geometry and ensures globally-optimal solutions. We define a pictorial structure with a corresponding cost function to detect tree bifur...
متن کاملIntrinsic vs. Extrinsic Motivation in an Interactive Engineering Game
In this paper, we study intrinsic vs. extrinsic motivation in players playing an electrical engineering gaming environment. We used UNTANGLED, a highly interactive game to conduct this study. This game is developed to solve complex mapping problem from electrical engineering using human intuitions. Our goal is to find whether there are differences in the ways anonymous players solved electrical...
متن کامل