Observing gravitational wave bursts in pulsar timing measurements
نویسندگان
چکیده
We propose a novel method for observing the gravitational wave signature of super-massive black hole (SMBH) mergers. This method is based on detection of a specific type of gravitational waves, namely gravitational wave burst with memory (BWM), using pulsar timing. We study the unique signature produced by BWM in anomalous pulsar timing residuals. We show that the present day pulsar timing precision allows one to detect BWM due to SMBH mergers from distances up to 1 Gpc (for case of equal mass 10 M⊙ SMBH). Improvements in precision of pulsar timing together with the increase in number of observed pulsars should eventually lead to detection of a BWM signal due to SMBH merger, thereby making the proposed technique complementary to the capabilities of the planned LISA mission.
منابع مشابه
Timing stability of millisecond pulsars and prospects for gravitational-wave detection
Analysis of high-precision timing observations of an array of ∼20 millisecond pulsars (a socalled “timing array”) may ultimately result in the detection of a stochastic gravitational-wave background. The feasibility of such a detection and the required duration of this type of experiment are determined by the achievable rms of the timing residuals and the timing stability of the pulsars involve...
متن کاملNew Limits on Gravitational Radiation using Pulsars
We calculate a new gravitational wave background limit using timing residuals from PSRs J1713+0747, B1855+09, and B1937+21. The new limit is based on 17 years of continuous data pieced together from 3 different observing projects: 2 at the Arecibo Observatory and 1 at the 140ft Green Bank Telescope. This project represents the earliest results from the ‘Pulsar Timing Array’ which will soon be a...
متن کاملThe North American Nanohertz Observatory for Gravitational Waves
1 Summary The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) is a consortium of astronomers whose goal is the creation of a galactic scale gravitational wave observatory sensitive to gravitational waves in the nHz – µHz band. It is just one component of an international collaboration involving similar organizations of European and Australian astronomers who share the sa...
متن کاملGravitational wave detection using high precision pulsar observations
Pulsar timing experiments are reaching sufficient sensitivity to detect a postulated stochastic gravitational wave background generated by merging supermassive black hole systems in the cores of galaxies. We describe the techniques behind the pulsar timing detection method, provide current upper bounds on the amplitude of any gravitational wave background, describe theoretical models predicting...
متن کاملGravitational Waves from Supermassive Black Hole Coalescence in a Hierarchical Galaxy Formation Model
We investigate the expected gravitational wave emission from coalescing supermassive black hole (SMBH) binaries resulting from mergers of their host galaxies. When galaxies merge, the SMBHs in the host galaxies sink to the center of the new merged galaxy and form a binary system. We employ a semi-analytic model of galaxy and quasar formation based on the hierarchical clustering scenario to esti...
متن کامل