Parallel static and dynamic multi-constraint graph partitioning
نویسندگان
چکیده
Sequential multi-constraint graph partitioners have been developed to address the static load balancing requirements of multi-phase simulations. These work well when (i) the graph that models the computation fits into the memory of a single processor, and (ii) the simulation does not require dynamic load balancing. The efficient execution of very large or dynamically adapting multi-phase simulations on highperformance parallel computers requires that the multi-constraint partitionings are computed in parallel. This paper presents a parallel formulation of a multi-constraint graph-partitioning algorithm, as well as a new partitioning algorithm for dynamic multi-phase simulations. We describe these algorithms and give experimental results conducted on a 128-processor Cray T3E. These results show that our parallel algorithms are able to efficiently compute partitionings of similar edge-cuts as serial multi-constraint algorithms, and can scale to very large graphs. Our dynamic multi-constraint algorithm is also able to minimize the data redistribution required to balance the load better than a naive scratch-remap approach. We have shown that both of our parallel multi-constraint graph partitioners are as scalable as the widelyused parallel graph partitioner implemented in PARMETIS. Both of our parallel multi-constraint graph partitioners are very fast, as they are able to compute three-constraint 128-way partitionings of a 7.5 million vertex graph in under 7 s on 128 processors of a Cray T3E. Copyright 2002 John Wiley & Sons, Ltd.
منابع مشابه
Parallel Multilevel Algorithms for Multi-Constraint Graph Partitioning
Sequential multi-constraint graph partitioning algorithms have been developed to address the load balancing requirements of multi-phase simulations. The e cient execution of large multi-phase simulations on high performance parallel computers requires that the multi-constraint partitionings are computed in parallel. This paper presents a parallel formulation of a recently developed multi-constr...
متن کاملParallel Multilevel Algorithms for Multi-constraint Graph Partitioning (Distinguished Paper)
Sequential multi-constraint graph partitioners have been developed to address the load balancing requirements of multi-phase simulations. The efficient execution of large multi-phase simulations on high performance parallel computers requires that the multi-constraint partitionings are computed in parallel. This paper presents a parallel formulation of a recently developed multi-constraint grap...
متن کاملParallel Execution Models for Constraint Propagation
Constraint propagation algorithms present inherent parallelism. Each constraint behaves as a concurrent process triggered by changes in the store of variables, updating the store in its turn. There is an inherent sequentiality, as well, since a constraint must be executed only as the consequence of a previous execution of another constraint. We have developed di erent parallel execution models ...
متن کاملHypergraph Models for Sparse Matrix Partitioning and Reordering
HYPERGRAPH MODELS FOR SPARSE MATRIX PARTITIONING AND REORDERING Umit V. C ataly urek Ph.D. in Computer Engineering and Information Science Supervisor: Assoc. Prof. Cevdet Aykanat November, 1999 Graphs have been widely used to represent sparse matrices for various scienti c applications including one-dimensional (1D) decomposition of sparse matrices for parallel sparse-matrix vector multiplic...
متن کاملDynamic Multi-partitioning for Parallel ®nite Element Applications
The central product of the DRAMA (Dynamic ReAllocation of Meshes for parallel Finite Element Applications) project is a library comprising a variety of tools for dynamic re-partitioning of unstructured Finite Element (FE) applications. The input to the DRAMA library is the computational mesh, and corresponding costs, partitioned into sub-domains. The core library functions then perform a parall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Concurrency and Computation: Practice and Experience
دوره 14 شماره
صفحات -
تاریخ انتشار 2002