High Aspect Ratio SiO2 Capillary Based On Silicon Etching and Thermal Oxidation Process for Optical Modulator

نویسندگان

  • N. V. Toan
  • S. Sangu
  • T. Saitoh
  • N. Inomata
  • T. Ono
چکیده

This paper presents the design and fabrication of an optical window for an optical modulator toward image sensing applications. An optical window consists of micrometer-order SiO2 capillaries (porous solid) that can modulate transmission light intensity by moving the liquid in and out of porous solid. A high optical transmittance of the optical window can be achieved due to refractive index matching when the liquid is penetrated into the porous solid. Otherwise, its light transmittance is lower because of light reflection and scattering by air holes and capillary walls. Silicon capillaries fabricated by deep reactive ion etching (DRIE) process are completely oxidized to form the SiO2 capillaries. Therefore, high aspect ratio SiO2 capillaries can be achieved based on silicon capillaries formed by DRIE technique. Large compressive stress of the oxide causes bending of the capillary structure, which is reduced by optimizing the design of device structure. The large stress of the optical window can be released via thin supporting beams. A 7.2 mm x 9.6 mm optical window area toward a fully integrated with the image sensor format is successfully fabricated and its optical transmittance is evaluated with and without inserting liquids (ethanol and matching oil). The achieved modulation range is approximately 20% to 35% with and without liquid penetration in visible region (wavelength range from 450 nm to 650 nm). Keywords—Thermal oxidation process, SiO2 capillaries, optical window, light transmittance, image sensor, liquid penetration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new low-temperature high-aspect-ratio MEMS process using plasma activated wafer bonding

This paper presents the development and characterization of a new high-aspect-ratio MEMS process. The silicon-on-silicon (SOS) process utilizes dielectric barrier discharge surface activated low-temperature wafer bonding and deep reactive ion etching to achieve a high aspect ratio (feature width reduction-to-depth ratio of 1:31), while allowing for the fabrication of devices with a very high an...

متن کامل

Fabrication of silicon quantum wires by anisotropic wet chemical etching and thermal oxidation

Ultrafine silicon quantum wires with high-quality Si/SiO2 heterointerfaces are successfully fabricated by utilizing anisotropic wet chemical etching and subsequent thermal oxidation. It is also found that the lateral dimensions of silicon quantum wires can be well controlled by selecting the temperature of the thermal oxidation process. The cross-sectional image from a scanning electron microsc...

متن کامل

Contribution of SiC and SiO2 to photoluminescence from SiC-SiO2 nanocables grown by thermal decomposition of methanol.

A new simple and cheap method to grow large scale SiC-SiO2 nanocables on catalyzed Si substrate directly is presented. The method is based on the thermal decomposition of methanol. The grown nanocables consisted of crystalline 3C-SiC and amorphous SiO2. A simple etching and oxidation process was used to analyze the contribution of SiC and SiO2 components to photoluminescence.

متن کامل

Investigation of HF/H2O2 Concentration Effect on Structural and Antireflection Properties of Porous Silicon Prepared by Metal-Assisted Chemical Etching Process for Photovoltaic Applications

Porous silicon was successfully prepared using metal-assisted chemical etching method. The Effect of HF/H2O2 concentration in etching solution as an affecting parameter on the prepared porosity type and size was investigated. Field emission electron microscopy (FE-SEM) confirmed that all etched samples had porous structure and the sample which was immersed into HF/H2O2 withmolar ratio of 7/3.53...

متن کامل

Catalyst Self-Assembly for Scalable Patterning of Sub 10 nm Ultrahigh Aspect Ratio Nanopores in Silicon.

Nanoporous silicon (NPSi) has received significant attention for its potential to contribute to a large number of applications, but has not yet been extensively implemented because of the inability of current state-of-the-art nanofabrication techniques to achieve sufficiently small pore size, high aspect ratio, and process scalability. In this work we describe the fabrication of NPSi via a modi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015