Stability of Parabolic Harnack Inequalities

نویسندگان

  • MARTIN T. BARLOW
  • RICHARD F. BASS
چکیده

Let (G,E) be a graph with weights {axy} for which a parabolic Harnack inequality holds with space-time scaling exponent β ≥ 2. Suppose {axy} is another set of weights that are comparable to {axy}. We prove that this parabolic Harnack inequality also holds for (G,E) with the weights {axy}. We also give stable necessary and sufficient conditions for this parabolic Harnack inequality to hold.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the equivalence of parabolic Harnack inequalities and heat kernel estimates

We prove the equivalence of parabolic Harnack inequalities and sub-Gaussian heat kernel estimates in a general metric measure space with a local regular Dirichlet form.

متن کامل

Interpolating between Li-Yau and Chow-Hamilton Harnack inequalities along the Yamabe flow

In this paper, we establish a one-parameter family of Harnack inequalities connecting the constrained trace Li-Yau differential Harnack inequality to the constrained trace Chow-Hamilton Harnack inequality for a nonlinear parabolic equation with respect to evolving metrics related to the Yamabe flow on the n-dimensional complete manifold. M.S.C. 2010: 53C44, 53C25.

متن کامل

Differential Harnack Inequalities on Riemannian Manifolds I : Linear Heat Equation

Abstract. In the first part of this paper, we get new Li-Yau type gradient estimates for positive solutions of heat equation on Riemmannian manifolds with Ricci(M) ≥ −k, k ∈ R. As applications, several parabolic Harnack inequalities are obtained and they lead to new estimates on heat kernels of manifolds with Ricci curvature bounded from below. In the second part, we establish a Perelman type L...

متن کامل

On cooperative parabolic systems: Harnack inequalities and asymptotic symmetry

We consider fully nonlinear weakly coupled systems of parabolic equations on a bounded reflectionally symmetric domain. Assuming the system is cooperative we prove the asymptotic symmetry of positive bounded solutions. To facilitate an application of the method of moving hyperplanes, we derive Harnack type estimates for linear cooperative parabolic systems.

متن کامل

Harnack inequalities and sub-Gaussian estimates for random walks

We show that a-parabolic Harnack inequality for random walks on graphs is equivalent, on one hand, to so called-Gaussian estimates for the transition probability and, on the other hand, to the conjunction of the elliptic Harnack inequality, the doubling volume property, and the fact that the mean exit time in any ball of radius R is of the order R. The latter condition can be replaced by a cert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003