An electron microscope immunocytochemical study of GABA(B) R2 receptors in the monkey basal ganglia: a comparative analysis with GABA(B) R1 receptor distribution.
نویسندگان
چکیده
Functional gamma-aminobutyric acid (GABA)(B) receptors are heterodimers made up of GABA(B) R1 and GABA(B) R2 subunits. The subcellular localization of GABA(B) R2 receptors remains poorly known in the central nervous system. Therefore, we performed an ultrastructural analysis of the localization of GABA(B) R2 receptor immunoreactivity in the monkey basal ganglia. Furthermore, to characterize better the neuronal sites at which GABA(B) R1 and GABA(B) R2 may interact to form functional receptors, we compared the relative distribution of immunoreactivity of the two GABA(B) receptors in various basal ganglia nuclei. Light to moderate GABA(B) R2 immunoreactivity was found in cell bodies and neuropil elements in all basal ganglia nuclei. At the electron microscope level, GABA(B) R2 immunoreactivity was commonly expressed postsynaptically, although immunoreactive preterminal axonal segments were also frequently encountered, particularly in the globus pallidus and substantia nigra, where they accounted for the third of the total number of GABA(B) R2-containing elements. A few labeled terminals that displayed the ultrastructural features of glutamatergic boutons were occasionally found in most basal ganglia nuclei, except for the subthalamic nucleus, which was devoid of GABA(B) R2-immunoreactive boutons. The relative distribution of GABA(B) R2 immunoreactivity in the monkey basal ganglia was largely consistent with that of GABA(B) R1, but some exceptions were found, most noticeably in the globus pallidus and substantia nigra, which contained a significantly larger proportion of presynaptic elements labeled for GABA(B) R1 than GABA(B) R2. These findings suggest the possible coexistence and heterodimerization of GABA(B) R1 and GABA(B) R2 at various pre- and postsynaptic sites, but also raise the possibility that the formation of functional GABA(B) receptors in specific compartments of basal ganglia neurons relies on mechanisms other than GABA(B) R1/R2 heterodimerization.
منابع مشابه
GABA(B) receptors in the centromedian/parafascicular thalamic nuclear complex: an ultrastructural analysis of GABA(B)R1 and GABA(B)R2 in the monkey thalamus.
Strong gamma-aminobutyric acid type B (GABA(B)) receptor binding has been shown throughout the thalamus, but the distribution of the two GABA(B) receptor subunits, GABA(B) receptor subunit 1 (GABA(B)R1) and GABA(B) receptor subunit 2 (GABA(B)R2), remains poorly characterized. In primates, the caudal intralaminar nuclei, centromedian and parafascicular (CM/PF), are an integral part of basal gang...
متن کاملHeteromeric assembly of GABA(B)R1 and GABA(B)R2 receptor subunits inhibits Ca(2+) current in sympathetic neurons.
Neuronal GABA(B) receptors regulate calcium and potassium currents via G-protein-coupled mechanisms and play a critical role in long-term inhibition of synaptic transmission in the CNS. Recent studies have demonstrated that assembly of GABA(B) receptor GABA(B)R1 and GABA(B)R2 subunits into functional heterodimers is required for coupling to potassium channels in heterologous systems. However wh...
متن کاملMarlin-1, a novel RNA-binding protein associates with GABA receptors.
GABA(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. Whereas heterodimerization between GABA(B) receptor GABA(B)R1 and GABA(B)R2 subunits is essential for functional expression, how neurons coordinate the assembly of these critical receptors remains to be established. Here we have identified Marlin-1, a novel GABA(B...
متن کاملHetero-oligomerization between GABAA and GABAB receptors regulates GABAB receptor trafficking.
The neurotransmitter gamma-aminobutyric acid (GABA) mediates inhibitory signaling in the brain via stimulation of both GABA(A) receptors (GABA(A)R), which are chloride-permeant ion channels, and GABA(B) receptors (GABA(B)R), which signal through coupling to G proteins. Here we report physical interactions between these two different classes of GABA receptor. Association of the GABA(B) receptor ...
متن کاملAn autocrine role for pituitary GABA: activation of GABA-B receptors and regulation of growth hormone levels.
There is increasing evidence suggesting that the neurotransmitter gamma-aminobutyric acid (GABA) is a local factor involved in the regulation of endocrine organs. Examples of such functions are documented in the pancreas, but recent results suggest that GABA may act in a similar way in the pituitary, in which GABA receptors are expressed and pituitary growth hormone (GH) cells provide a source ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of comparative neurology
دوره 476 1 شماره
صفحات -
تاریخ انتشار 2004