A computational framework for empirical Bayes inference

نویسنده

  • Yves F. Atchadé
چکیده

In empirical Bayes inference one is typically interested in sampling from the posterior distribution of a parameter with a hyper-parameter set to its maximum likelihood estimate. This is often problematic particularly when the likelihood function of the hyper-parameter is not available in closed form and the posterior distribution is intractable. Previous works have dealt with this problem using a multi-step approach based on the EM algorithm and Markov Chain Monte Carlo (MCMC). We propose a framework based on recent developments in adaptive MCMC, where this problem is addressed more efficiently using a single Monte Carlo run. We discuss the convergence of the algorithm and its connection with the EM algorithm. We apply our algorithm to the Bayesian Lasso of Park and Casella (2008) and on the empirical Bayes variable selection of George and Foster (2000). AMS 2000 subject classifications: Primary 60C05, 60J27, 60J35, 65C40.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inference for the Proportional Hazards Family under Progressive Type-II Censoring

In this paper, the well-known proportional hazards model which includes several well-known lifetime distributions such as exponential,Pareto, Lomax, Burr type XII, and so on is considered. With both Bayesian and non-Bayesian approaches , we consider the estimation of parameters of interest based on progressively Type-II right censored samples. The Bayes estimates are obtained based on symmetric...

متن کامل

Parametric Empirical Bayes Test and Its Application to Selection of Wavelet Threshold

In this article, we propose a new method for selecting level dependent threshold in wavelet shrinkage using the empirical Bayes framework. We employ both Bayesian and frequentist testing hypothesis instead of point estimation method. The best test yields the best prior and hence the more appropriate wavelet thresholds. The standard model functions are used to illustrate the performance of the p...

متن کامل

Invariant Empirical Bayes Confidence Interval for Mean Vector of Normal Distribution and its Generalization for Exponential Family

Based on a given Bayesian model of multivariate normal with  known variance matrix we will find an empirical Bayes confidence interval for the mean vector components which have normal distribution. We will find this empirical Bayes confidence interval as a conditional form on ancillary statistic. In both cases (i.e.  conditional and unconditional empirical Bayes confidence interval), the empiri...

متن کامل

Profile Predictive Inference

Bayesian predictive inference analyzes a dataset to make predictions about new observations. When a model does not match the data, predictive accuracy su ers. We develop population empirical Bayes ( ), a hierarchical framework that explicitly models the empirical population distribution as part of Bayesian analysis. We introduce a new concept, the latent dataset, as a hierarchical variable and ...

متن کامل

Empirical Bayes Estimation in Nonstationary Markov chains

Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical  Bayes estimators  for the transition probability  matrix of a finite nonstationary  Markov chain. The data are assumed to be of  a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics and Computing

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2011