Janowski type close-to-convex functions associated with conic regions
نویسندگان
چکیده
The analytic functions, mapping the open unit disk onto petal and oval type regions, introduced by Noor and Malik (Comput. Math. Appl. 62:2209-2217, 2011), are considered to define and study their associated close-to-convex functions. This work includes certain geometric properties like sufficiency criteria, coefficient estimates, arc length, the growth rate of coefficients of Taylor series, integral preserving properties of these functions.
منابع مشابه
Higher order close-to-convex functions associated with Attiya-Srivastava operator
In this paper, we introduce a new class$T_{k}^{s,a}[A,B,alpha ,beta ]$ of analytic functions by using a newly defined convolution operator. This class contains many known classes of analytic and univalent functions as special cases. We derived some interesting results including inclusion relationships, a radius problem and sharp coefficient bound for this class.
متن کاملOn Subclass of Alpha-quasi Convex Functions Associated with Conic Regions
The core objective of this article is to introduce and study new classes of α-quasi-convex functions in conic regions. Various interesting properties such as integral representation, sufficiency criteria, inclusion results and the effect of certain integral operators on these classes has also been examined.
متن کاملSome Properties of Certain Subclasses of Close-to-Convex and Quasi-convex Functions with Respect to 2k-Symmetric Conjugate Points
متن کامل
Coefficient Estimates for Some Subclasses of Analytic and Bi-Univalent Functions Associated with Conic Domain
The main objective of this investigation is to introduce certain new subclasses of the class $Sigma $ of bi-univalent functions by using concept of conic domain. Furthermore, we find non-sharp estimates on the first two Taylor-Maclaurin coefficients $ left vert a_{2}right vert $ and $left vert a_{3}right vert $ for functions in these new subclasses. We consider various corollaries and consequen...
متن کاملThe Fekete-Szegö Problem for p-Valently Janowski Starlike and Convex Functions
For p-valently Janowski starlike and convex functions defined by applying subordination for the generalized Janowski function, the sharp upper bounds of a functional |a p2 − μa 2 p1 | related to the Fekete-Szegö problem are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017