Essential Self–adjointness and Global Hypoellipticity of the Twisted Laplacian

نویسنده

  • M. W. Wong
چکیده

A scale of Sobolev spaces is introduced to measure the global hypoellipticity of the twisted Laplacian. The essential self-adjointness of the twisted Laplacian is established and the domain of the unique self-adjoint extension is determined in terms of the Sobolev spaces. The global hypoellipticity of the twisted Laplacian in the Gelfand–Shilov spaces is also proved. 1. The twisted Laplacian Let ∂ ∂z and ∂ ∂z be linear partial differential operators on R 2 given by ∂ ∂z = ∂ ∂x − i ∂ ∂y and ∂ ∂z = ∂ ∂x + i ∂ ∂y . Then we define the linear partial differential operator L on R2 by L = − 2 (ZZ + ZZ), where Z = ∂ ∂z + 1 2 z, z = x− iy, and Z = ∂ ∂z − 1 2 z, z = x + iy. The vector fields Z and Z, and the identity operator I form a basis for a Lie algebra in which the Lie bracket of two elements is their commutator. In fact, −Z is the formal adjoint of Z and L is an elliptic partial differential operator on R2 given by L = −∆ + 1 4 (x2 + y2)− i (

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Black-Scholes equation; method of Heir-equations‎, ‎nonlinear self-adjointness and conservation laws

In this paper, Heir-equations method is applied to investigate nonclassical symmetries and new solutions of the Black-Scholes equation. Nonlinear self-adjointness is proved and infinite number of conservation laws are computed by a new conservation laws theorem.

متن کامل

Hypoellipticity of the Kohn Laplacian for Three-dimensional Tubular Cr Structures

(1) ∂̄b = ∂x + i(∂y − φ(x)∂t) where φ ∈ C∞(R) is real-valued. Such CR structures may be realized as the boundaries of tube domains {z : Im z2 > φ(Re z1)} in C. The Levi form may be identified with the function φ′′(x). We always assume that φ is convex, so that the structure is pseudoconvex. By ∂̄∗ b we mean the adjoint of ∂̄b with respect to L (R, dx dy dt); thus ∂̄∗ b = −∂x + i(∂y − φ(x)∂t). The p...

متن کامل

Math 713 Fall 2006 Lecture Notes on Functional Analysis

1. Topological Vector Spaces 1 2. Banach Algebras 10 2.1. ∗–Algebras (over complexes) 15 2.2. Exercises 18 3. The Spectral Theorem 19 3.1. Problems on the Spectral Theorem (Multiplication Operator Form) 24 3.2. Integration with respect to a Projection Valued Measure 25 3.3. The Functional Calculus 32 4. Unbounded Operators 35 4.1. Closed, symmetric and self-adjoint operators 35 4.2. Differentia...

متن کامل

Math 713 Spring 2010 Lecture Notes on Functional Analysis

1. Topological Vector Spaces 1 1.1. The Krein-Milman theorem 7 2. Banach Algebras 11 2.1. Commutative Banach algebras 14 2.2. ∗–Algebras (over complexes) 17 2.3. Problems on Banach algebras 20 3. The Spectral Theorem 21 3.1. Problems on the Spectral Theorem (Multiplication Operator Form) 26 3.2. Integration with respect to a Projection Valued Measure 27 3.3. The Functional Calculus 34 4. Unboun...

متن کامل

Math 713 Spring 2008 Lecture Notes on Functional Analysis

1. Topological Vector Spaces 1 1.1. The Krein-Milman theorem 7 2. Banach Algebras 11 2.1. Commutative Banach algebras 14 2.2. ∗–Algebras (over complexes) 17 2.3. Exercises 20 3. The Spectral Theorem 21 3.1. Problems on the Spectral Theorem (Multiplication Operator Form) 26 3.2. Integration with respect to a Projection Valued Measure 27 3.3. The Functional Calculus 34 4. Unbounded Operators 37 4...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009