A Boundary Value Problem for Minimal Lagrangian Graphs Simon Brendle and Micah Warren

نویسنده

  • MICAH WARREN
چکیده

A submanifold Σ ⊂ Rn × Rn is called Lagrangian if ω|Σ = 0. In this paper, we study a boundary value problem for minimal Lagrangian graphs in Rn×Rn. To that end, we fix two domains Ω, Ω̃ ⊂ Rn with smooth boundary. For each diffeomorphism f : Ω → Ω̃, we consider its graph Σ = {(x, f(x)) : x ∈ Ω} ⊂ Rn × Rn. We consider the problem of finding a diffeomorphism f : Ω → Ω̃ such that Σ is Lagrangian and has zero mean curvature. Our main result asserts that this is possible if Ω and Ω̃ are strictly convex: Theorem. Let Ω and Ω̃ be strictly convex domains in Rn with smooth boundary. Then there exists a diffeomorphism f : Ω → Ω̃ such that the graph

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit gradient estimates for minimal Lagrangian surfaces of dimension two

We derive explicit, uniform, a priori interior Hessian and gradient estimates for special Lagrangian equations of all phases in dimension two.

متن کامل

Augmented Lagrangian method for solving absolute value equation and its application in two-point boundary value problems

One of the most important topic that consider in recent years by researcher is absolute value equation (AVE). The absolute value equation seems to be a useful tool in optimization since it subsumes the linear complementarity problem and thus also linear programming and convex quadratic programming. This paper introduce a new method for solving absolute value equation. To do this, we transform a...

متن کامل

Calibrations Associated to Monge-ampère Equations

We show the volume maximizing property of the special Lagrangian submanifolds of a pseudo-Euclidean space. These special Lagrangian submanifolds arise locally as gradient graphs of solutions to MongeAmpère equations.

متن کامل

A Liouville Type Theorem for Special Lagrangian Equations with Constraints

We derive a Liouville type result for special Lagrangian equations with certain “convexity” and restricted linear growth assumptions on the solutions.

متن کامل

HESSIAN AND GRADIENT ESTIMATESFOR THREE DIMENSIONAL SPECIAL LAGRANGIAN EQUATIONS WITH LARGE PHASE By MICAH WARREN and YU YUAN

We obtain a priori interior Hessian and gradient estimates for special Lagrangian equations with phase larger than a critical value in dimension three. Gradient estimates are also derived for critical and super critical phases in general dimensions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008