Improving Optical Music Recognition by Combining Outputs from Multiple Sources

نویسندگان

  • Victor Padilla
  • Alex McLean
  • Alan Marsden
  • Kia Ng
چکیده

Current software for Optical Music Recognition (OMR) produces outputs with too many errors that render it an unrealistic option for the production of a large corpus of symbolic music files. In this paper, we propose a system which applies image pre-processing techniques to scans of scores and combines the outputs of different commercial OMR programs when applied to images of different scores of the same piece of music. As a result of this procedure, the combined output has around 50% fewer errors when compared to the output of any one OMR program. Image pre-processing splits scores into separate movements and sections and removes ossia staves which confuse OMR software. Post-processing aligns the outputs from different OMR programs and from different sources, rejecting outputs with the most errors and using majority voting to determine the likely correct details. Our software produces output in MusicXML, concentrating on accurate pitch and rhythm and ignoring grace notes. Results of tests on the six string quartets by Mozart dedicated to Joseph Haydn and the first six piano sonatas by Mozart are presented, showing an average recognition rate of around 95%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Keyword Recognition of Spoken Queries by Combining Multiple Speech Recognizer's Outputs for Speech-driven WEB Retrieval Task

This paper presents speech-driven Web retrieval models which accept spoken search topics (queries) in the NTCIR-3 Web retrieval task. The major focus of this paper is on improving speech recognition accuracy of spoken queries and then improving retrieval accuracy in speechdriven Web retrieval. We experimentally evaluated the techniques of combining outputs of multiple LVCSRmodels in recognition...

متن کامل

Improving Multimedia Retrieval with a Video OCR

We present a set of experiments with a video OCR system (VOCR) tailored for video information retrieval and establish its importance in multimedia search in general and for some specific queries in particular. The system, inspired by an existing work on text detection and recognition in images, has been developed using techniques involving detailed analysis of video frames producing candidate t...

متن کامل

A Comparative Survey of Image Binarisation Algorithms for Optical Recognition on Degraded Musical Sources

Binarisation of greyscale images is a critical step in optical music recognition (OMR) preprocessing. Binarising music documents is particularly challenging because of the nature of music notation, even more so when the sources are degraded, e.g., with ink bleed-through from the other side of the page. This paper presents a comparative evaluation of 25 binarisation algorithms tested on a set of...

متن کامل

Prospects for Improving OMR with Multiple Recognizers

OMR (Optical Music Recognition) programs have been available for years, but they still leave much to be desired in terms of accuracy. We studied the feasibility of achieving substantially better accuracy by using the output of several programs to “triangulate” and get better results than any of the individual programs; this multiplerecognizer approach has had some success with other media but, ...

متن کامل

Review on Multiple Classifier System in Pattern Recognition

Recently many researchers concentrate on Multiple Classifier System (MCS) in pattern recognition. Pattern recognition system build in three steps i.e. database, feature extraction and classifier. MCS is Architect by combining more than one classifier i.e. either same or different classifiers for different pattern recognition applications such as emotion recognition, character recognition, face ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015