Fibonacci Cubes—a Class of Self-similar Graphs
نویسندگان
چکیده
The Fibonacci cube [6] is a new class of graphs that are inspired by the famous numbers. Because of the rich properties of the Fibonacci numbers [1], the graph also shows interesting properties. For a graph with AT nodes, it is known [6] that the diameter, the edge connectivity, and the node connectivity of the Fibonacci cube are in the order of 0(log N), which are similar to the Boolean cube (or hypercube, «-cube, cosmic cube [9]). A possible application of the Fibonacci cube is in the interconnection of large-scale multi-computers or distributed networks. Here we show that the Fibonacci cube has attractive recurrent structures (called self-similarity, §2) in the following sense:
منابع مشابه
Determining which Fibonacci (p, r)-cubes can be Z-transformation graphs
The Fibonacci (p, r)-cube is an interconnection topology, which includes a wide range of connection topologies as its special cases, such as the Fibonacci cube, the postal network, etc. Klavžar and Žigert [S. Klavžar, P. Žigert, Fibonacci cubes are the resonance graphs of fibonaccenes, Fibonacci Quart. 43 (2005) 269–276] proved that Fibonacci cubes are just the Z-transformation graphs (also cal...
متن کاملFibonacci-like cubes as Z-transformation graphs
The Fibonacci cube Γn is a subgraph of n-dimensional hypercube induced by the vertices without two consecutive ones. Klavžar and Žigert [Fibonacci cubes are the resonance graphs of fibonaccenes, Fibonacci Quart. 43 (2005) 269–276] proved that Fibonacci cubes are precisely the Z -transformation graphs (or resonance graphs) of zigzag hexagonal chains. In this paper, we characterize plane bipartit...
متن کاملFibonacci Cubes Are the Resonance Graphs of Fibonaccenes
Fibonacci cubes were introduced in 1993 and intensively studied afterwards. This paper adds the following theorem to these studies: Fibonacci cubes are precisely the resonance graphs of fibonaccenes. Here fibonaccenes are graphs that appear in chemical graph theory and resonance graphs reflect the structure of their perfect matchings. Some consequences of the main result are also listed.
متن کاملOn the Fibonacci Dimension of Partial Cubes
The Fibonacci dimension fdim(G) of a graph G was introduced in [7] as the smallest integer d such that G admits an isometric embedding into Qd, the d-dimensional Fibonacci cube. A somewhat new combinatorial characterization of the Fibonacci dimension is given, which enables more comfortable proofs of some previously known results. In the second part of the paper the Fibonacci dimension of the r...
متن کاملFibonacci dimension of the resonance graphs of catacondensed benzenoid graphs
The Fibonacci dimension fdim(G) of a graph G was introduced in [1] as the smallest integer d such that G admits an isometric embedding into Γd, the d-dimensional Fibonacci cube. The Fibonacci dimension of the resonance graphs of catacondensed benzenoid systems is studied. This study is inspired by the fact, that the Fibonacci cubes are precisely the resonance graphs of a subclass of the catacon...
متن کامل