Wang Algebra and Matroids
نویسندگان
چکیده
A&met-Wang alebra is defined by three rules: i) go =yx; ii) x + x = 0; and iii) xx =O. K. T. Wang showed that these rules give a shortcut method for finding tbe joint resistance (or driving point reshance) of an electrical network. However, there are electrical systems more general than the KIrckhoff network. For these system regular matroids repiace‘ networks. It is shown in this paper that Wang algebra is an excellent tool to develop proper&s of networks. Moreover tke Wang shortcut ~method can still be used to find the joint resistance of an electrical network.
منابع مشابه
CHARACTERIZATION OF L-FUZZIFYING MATROIDS BY L-FUZZIFYING CLOSURE OPERATORS
An L-fuzzifying matroid is a pair (E, I), where I is a map from2E to L satisfying three axioms. In this paper, the notion of closure operatorsin matroid theory is generalized to an L-fuzzy setting and called L-fuzzifyingclosure operators. It is proved that there exists a one-to-one correspondencebetween L-fuzzifying matroids and their L-fuzzifying closure operators.
متن کاملA free subalgebra of the algebra of matroids
This paper is an initial inquiry into the structure of the Hopf algebra of matroids with restriction-contraction coproduct. Using a family of matroids introduced by Crapo in 1965, we show that the subalgebra generated by a single point and a single loop in the dual of this Hopf algebra is free.
متن کاملReverse Mathematics of Matroids
Matroids generalize the familiar notion of linear dependence from linear algebra. Following a brief discussion of founding work in computability and matroids, we use the techniques of reverse mathematics to determine the logical strength of some basis theorems for matroids and enumerated matroids. Next, using Weihrauch reducibility, we relate the basis results to combinatorial choice principles...
متن کاملPrimitive Elements in the Matroid-minor Hopf Algebra
We introduce the matroid-minor coalgebra C, which has labeled matroids as distinguished basis, and coproduct given by splitting a matroid into a submatroid and complementary contraction all possible ways. We introduce two new bases for C; the first of these is is related to the distinguished basis by Möbius inversion over the rank-preserving weak order on matroids, the second by Möbius inversio...
متن کاملLie triple derivation algebra of Virasoro-like algebra
Let $mathfrak{L}$ be the Virasoro-like algebra and $mathfrak{g}$ itsderived algebra, respectively. We investigate the structure of the Lie triplederivation algebra of $mathfrak{L}$ and $mathfrak{g}$. We provethat they are both isomorphic to $mathfrak{L}$, which provides twoexamples of invariance under triple derivation.
متن کامل