The occupant response to autonomous braking: a modeling approach that accounts for active musculature.
نویسندگان
چکیده
OBJECTIVE The aim of this study is to model occupant kinematics in an autonomous braking event by using a finite element (FE) human body model (HBM) with active muscles as a step toward HBMs that can be used for injury prediction in integrated precrash and crash simulations. METHODS Trunk and neck musculature was added to an existing FE HBM. Active muscle responses were achieved using a simplified implementation of 3 feedback controllers for head angle, neck angle, and angle of the lumbar spine. The HBM was compared with volunteer responses in sled tests with 10 ms(-2) deceleration over 0.2 s and in 1.4-s autonomous braking interventions with a peak deceleration of 6.7 ms(-2). RESULTS The HBM captures the characteristics of the kinematics of volunteers in sled tests. Peak forward displacements have the same timing as for the volunteers, and lumbar muscle activation timing matches data from one of the volunteers. The responses of volunteers in autonomous braking interventions are mainly small head rotations and translational motions. This is captured by the HBM controller objective, which is to maintain the initial angular positions. The HBM response with active muscles is within ±1 standard deviation of the average volunteer response with respect to head displacements and angular rotation. CONCLUSIONS With the implementation of feedback control of active musculature in an FE HBM it is possible to model the occupant response to autonomous braking interventions. The lumbar controller is important for the simulations of lap belt-restrained occupants; it is less important for the kinematics of occupants with a modern 3-point seat belt. Increasing head and neck controller gains provides a better correlation for head rotation, whereas it reduces the vertical head displacement and introduces oscillations.
منابع مشابه
Muscle Responses of Car Occupants Numerical Modeling and Volunteer Experiments under Pre-Crash Braking Conditions
Over 30 000 fatalities related to the road transport system are reported anually in Europe. Of these fatalities, the largest share is car occupants, even though significant improvements in vehicle safety have been achieved by the implementation of in-crash restraints and pre-crash driver support systems. Integration of pre-crash and in-crash safety systems has a potential to further reduce car ...
متن کاملA method to model anticipatory postural control in driver braking events.
Human body models (HBMs) for vehicle occupant simulations have recently been extended with active muscles and postural control strategies. Feedback control has been used to model occupant responses to autonomous braking interventions. However, driver postural responses during driver initiated braking differ greatly from autonomous braking. In the present study, an anticipatory postural response...
متن کاملTHESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING IN MACHINE AND VEHICLE SYSTEMS Active Muscle Responses in a Finite Element Human Body Model
The development of automotive safety systems is moving towards an integration of systems that are active before and during an impact. Consequently, there is a need to make a combined analysis of both the pre-crash and the in-crash phases, which leads to new requirements for Human Body Models (HBMs) that today are used for crash simulations. In the pre-crash phase the extended duration makes the...
متن کاملRobust stabilization of a class of three-dimensional uncertain fractional-order non-autonomous systems
This paper concerns the problem of robust stabilization of uncertain fractional-order non-autonomous systems. In this regard, a single input active control approach is proposed for control and stabilization of three-dimensional uncertain fractional-order systems. The robust controller is designed on the basis of fractional Lyapunov stability theory. Furthermore, the effects of model uncertai...
متن کاملProviding a Model for Evaluating Suspicious Bank Accounts with the Approach of Determining Tax Effects Based on Structural Equation Modeling
The main approach of this study is to provide solutions to managers, economists, and tax auditors. To have a clearer perspective of the transactional relationships that distress the taxpayer transaction tax also help them to choose the best strategy to improve tax revenue. In this paper the fuzzy Delphi method was used to identify the indicators affecting suspicious bank accounts. The data coll...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Traffic injury prevention
دوره 13 3 شماره
صفحات -
تاریخ انتشار 2012