Approximate Inverse Preconditioning of Iterative Methods for Nonsymmetric Linear Systems

نویسنده

  • MICHELE BENZI
چکیده

A method for computing an incomplete factorization of the inverse of a nonsymmetric matrix A is presented. The resulting factorized sparse approximate inverse is used as a preconditioner in the iterative solution of Ax = b by Krylov subspace methods. 1. Introduction. We describe a method for computing an incomplete factorization of the inverse of a general sparse matrix A 2 IR nn. The resulting factorized sparse approximate inverse, which is guaranteed to exist if A is an H-matrix, can be used as an explicit preconditioner for the solution of Ax = b by conjugate gradient-type methods. The application of the preconditioner only requires matrix-vector products, which can be advantageous on vector and parallel architectures. In contrast, implicit preconditioners (such as ILU) involve the solution of triangular linear systems, whose eecient implementation can be problematic in a parallel environment. The results of our experiments with a sequential implementation of the new method indicate that the approximate inverse preconditioner results in good convergence rates (comparable to those obtained with standard ILU techniques). A detailed study of this method can be found in 3].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioning Sparse Nonsymmetric Linear Systems with the Sherman-Morrison Formula

Let Ax = b be a large, sparse, nonsymmetric system of linear equations. A new sparse approximate inverse preconditioning technique for such a class of systems is proposed. We show how the matrix A−1 0 −A−1, where A0 is a nonsingular matrix whose inverse is known or easy to compute, can be factorized in the form UΩV T using the Sherman–Morrison formula. When this factorization process is done in...

متن کامل

A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems

This paper is concerned with a new approach to preconditioning for large sparse linear systems A procedure for computing an incomplete factorization of the inverse of a nonsymmetric matrix is developed and the resulting factorized sparse approximate inverse is used as an explicit preconditioner for conjugate gradient type methods Some theoretical properties of the preconditioner are discussed a...

متن کامل

Block Approximate Inverse Preconditioners for Sparse Nonsymmetric Linear Systems

Abstract. In this paper block approximate inverse preconditioners to solve sparse nonsymmetric linear systems with iterative Krylov subspace methods are studied. The computation of the preconditioners involves consecutive updates of variable rank of an initial and nonsingular matrix A0 and the application of the Sherman-MorrisonWoodbury formula to compute an approximate inverse decomposition of...

متن کامل

A Transformation Approach That Makes Spai, Psai and Rsai Procedures Efficient for Large Double Irregular Nonsymmetric Sparse Linear Systems

It has been known that the sparse approximate inverse preconditioning procedures SPAI and PSAI(tol) are costly to construct preconditioners for a large sparse nonsymmetric linear system with the coefficient matrix having at least one relatively dense column. This is also true for SPAI and the recently proposed sparse approximate inverse preconditioning procedure RSAI(tol) procedure when the mat...

متن کامل

Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations

Discretization and linearization of the steady-state Navier-Stokes equations gives rise to a nonsymmetric indeenite linear system of equations. In this paper, we introduce preconditioning techniques for such systems with the property that the eigenvalues of the preconditioned matrices are bounded independently of the mesh size used in the discretization. We connrm and supplement these analytic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998