Extractive Summarization by Maximizing Semantic Volume
نویسندگان
چکیده
The most successful approaches to extractive text summarization seek to maximize bigram coverage subject to a budget constraint. In this work, we propose instead to maximize semantic volume. We embed each sentence in a semantic space and construct a summary by choosing a subset of sentences whose convex hull maximizes volume in that space. We provide a greedy algorithm based on the GramSchmidt process to efficiently perform volume maximization. Our method outperforms the state-of-the-art summarization approaches on benchmark datasets.
منابع مشابه
Text Summarization Using Cuckoo Search Optimization Algorithm
Today, with rapid growth of the World Wide Web and creation of Internet sites and online text resources, text summarization issue is highly attended by various researchers. Extractive-based text summarization is an important summarization method which is included of selecting the top representative sentences from the input document. When, we are facing into large data volume documents, the extr...
متن کاملTaking into account Inter-sentence Similarity for Update Summarization
Following Gillick and Favre (2009), a lot of work about extractive summarization has modeled this task by associating two contrary constraints: one aims at maximizing the coverage of the summary with respect to its information content while the other represents its size limit. In this context, the notion of redundancy is only implicitly taken into account. In this article, we extend the framewo...
متن کاملUsing Latent Semantic Analysis for Extractive Summarization
In this paper, we use simple techniques derived from on Latent Semantic Analysis (LSA) to provide a simple and robust way of generating extractive summaries for TAC 2008 Update Summarization task.
متن کاملThe PYTHY Summarization System: Microsoft Research at DUC2007
PYTHY is a trainable extractive summarization engine that learns a log-linear sentence ranking model by maximizing three metrics of sentence goodness: two of the metrics are based on ROUGE scores against model summaries and one is based on Semantic Content Unit (SCU) weights associated with sentences selected by past peers that were obtained during the Pyramid evaluations. In addition to senten...
متن کاملBiogeography-Based Optimization Algorithm for Automatic Extractive Text Summarization
Given the increasing number of documents, sites, online sources, and the users’ desire to quickly access information, automatic textual summarization has caught the attention of many researchers in this field. Researchers have presented different methods for text summarization as well as a useful summary of those texts including relevant document sentences. This study select...
متن کامل