The Effect of Interference on the CD8+ T Cell Escape Rates in HIV
نویسندگان
چکیده
In early human immunodeficiency virus (HIV) infection, the virus population escapes from multiple CD8(+) cell responses. The later an escape mutation emerges, the slower it outgrows its competition, i.e., the escape rate is lower. This pattern could indicate that the strength of the CD8(+) cell responses is waning, or that later viral escape mutants carry a larger fitness cost. In this paper, we investigate whether the pattern of decreasing escape rates could also be caused by genetic interference among different escape strains. To this end, we developed a mathematical multi-epitope model of HIV dynamics, which incorporates stochastic effects, recombination, and mutation. We used cumulative linkage disequilibrium measures to quantify the amount of interference. We found that nearly synchronous, similarly strong immune responses in two-locus systems enhance the generation of genetic interference. This effect, combined with a scheme of densely spaced sampling times at the beginning of infection and sparse sampling times later, leads to decreasing successive escape rate estimates, even when there were no selection differences among alleles. These predictions are supported by empirical data from one HIV-infected patient. Thus, interference could explain why later escapes are slower. Considering escape mutations in isolation, neglecting their genetic linkage, conceals the underlying haplotype dynamics and can affect the estimation of the selective pressure exerted by CD8(+) cells. In systems in which multiple escape mutations appear, the occurrence of interference dynamics should be assessed by measuring the linkage between different escape mutations.
منابع مشابه
Investigating the Consequences of Interference between Multiple CD8+ T Cell Escape Mutations in Early HIV Infection
During early human immunodeficiency virus (HIV) infection multiple CD8+ T cell responses are elicited almost simultaneously. These responses exert strong selective pressures on different parts of HIV's genome, and select for mutations that escape recognition and are thus beneficial to the virus. Some studies reveal that the later these escape mutations emerge, the more slowly they go to fixatio...
متن کاملTime Intervals in Sequence Sampling, Not Data Modifications, Have a Major Impact on Estimates of HIV Escape Rates
The ability of human immunodeficiency virus (HIV) to avoid recognition by humoral and cellular immunity (viral escape) is well-documented, but the strength of the immune response needed to cause such a viral escape remains poorly quantified. Several previous studies observed a more rapid escape of HIV from CD8 T cell responses in the acute phase of infection compared to chronic infection. The r...
متن کاملReference Values of Lymphocyte Sub-Populations in Healthy Human Immunodeficiency Virus-Negative Iranian Adults
Background: Lymphocyte subsets enumeration is considered prominent in the management of primary and acquired immunodeficiency disorders. Because of local variations due to race, age, gender, and environmental conditions on lymphocyte subsets, and to improve the accuracy of interpretation of laboratory findings, reference intervals must be determined in every population. Objective: To establish ...
متن کاملAn Efficient Method to Solve the Mathematical Model of HIV Infection for CD8+ T-Cells
In this paper, the mathematical model of HIV infection for CD8+ T-cells is illustrated. The homotopy analysis method and the Laplace transformations are combined for solving this model. Also, the convergence theorem is proved to demonstrate the abilities of presented method for solving non-linear mathematical models. The numerical results for $N=5, 10$ are presented. Several $hbar$-c...
متن کاملEpitope-specific CD8+ T cell kinetics rather than viral variability determine the timing of immune escape in simian immunodeficiency virus infection.
CD8(+) T cells are important for the control of chronic HIV infection. However, the virus rapidly acquires "escape mutations" that reduce CD8(+) T cell recognition and viral control. The timing of when immune escape occurs at a given epitope varies widely among patients and also among different epitopes within a patient. The strength of the CD8(+) T cell response, as well as mutation rates, pat...
متن کامل