Tissue-nonspecific alkaline phosphatase is required for the calcification of collagen in serum: a possible mechanism for biomineralization.

نویسندگان

  • Paul A Price
  • Damon Toroian
  • Wai Si Chan
چکیده

Previous studies have shown that the type I collagen of tendon and demineralized bone both calcify rapidly in serum. The speed, collagen matrix-type specificity, and extent of the re-calcification of demineralized bone in serum suggest that the serum calcification activity identified in these studies may participate in normal biomineralization. Because of its presence in serum and its long history of association with the normal mineralization of the collagen matrix of bone, tissue-nonspecific alkaline phosphatase (TNAP) is an obvious candidate for a protein that could be a component of serum calcification activity, and experiments were therefore carried out to test this possibility. These experiments show that the inactivation of TNAP in serum prevents collagen calcification, and that the addition of physiological levels of purified TNAP restores the ability of TNAP-deficient serum to calcify collagen. Additional experiments show that the role of TNAP in collagen calcification is to activate a serum nucleator of apatite crystal formation. Based on these and earlier studies, the mechanism of collagen calcification in serum requires at least four elements as follows. 1) A matrix (collagen fibrils) that is accessible to small apatite crystals but not large molecules ( Toroian, D., Lim, J. E., and Price, P. A. (2007) J. Biol. Chem. 282, 22437-22447 ). 2) A large serum nucleator that generates small crystals, some of which diffuse into the fibrils. 3) A source of TNAP to activate the serum nucleator. 4) A large protein (fetuin) that selectively inhibits growth of crystals remaining in solution, thereby ensuring that only crystals within fibrils grow ( Toroian, D. T., and Price, P. A. (2008) Calcif. Tissue Int. 82, 116-126 ).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationship of Conjunctival and Corneal Calcification with Secondary Hyperpara-thyroidism in Hemodialysis Patients

Background/Objective: Hyperphosphatemia is the consequence of end stage renal failure. Inadequate control of serum phosphorus results in elevated Ca×P product with subsequent soft tissue deposition in the form of conjunctival and corneal calcification.  In this study, we evaluated the relationship of conjunctival and corneal calcification with secondary hyperparathyroidism in hemodialysis patie...

متن کامل

Transgenic Overexpression of Tissue‐Nonspecific Alkaline Phosphatase (TNAP) in Vascular Endothelium Results in Generalized Arterial Calcification

BACKGROUND Ectopic vascular calcification is a common condition associated with aging, atherosclerosis, diabetes, and/or chronic kidney disease. Smooth muscle cells are the best characterized source of osteogenic progenitors in the vasculature; however, recent studies suggest that cells of endothelial origin can also promote calcification. To test this, we sought to increase the osteogenic pote...

متن کامل

Serum alkaline phosphatase negatively affects endothelium-dependent vasodilation in naïve hypertensive patients.

Tissue nonspecific alkaline phosphatase, promoting arterial calcification in experimental models, is a powerful predictor of total and cardiovascular mortality in general population and in patients with renal or cardiovascular diseases. For this study, to evaluate a possible correlation between serum alkaline phosphatase levels and endothelial function, assessed by strain gauge plethysmography,...

متن کامل

Immobilization of the Alkaline Phosphatase on Collagen Surface via Cross-Linking Method

Background: Collagen, the most abundant protein in the human body, and as an extracellular matrix protein, has an important role in the fiber formation. This feature of the collagen renders  establishment of the structural skeleton in tissues. Regarding specific features associated with the collagen, such as, formation of the porous structure, permeability and hydrophilicity, it can also be use...

متن کامل

Biomineralization of uranium by PhoY phosphatase activity aids cell survival in Caulobacter crescentus.

Caulobacter crescentus is known to tolerate high levels of uranium [U(VI)], but its detoxification mechanism is poorly understood. Here we show that C. crescentus is able to facilitate U(VI) biomineralization through the formation of U-Pi precipitates via its native alkaline phosphatase activity. The U-Pi precipitates, deposited on the cell surface in the form of meta-autunite structures, have ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 284 7  شماره 

صفحات  -

تاریخ انتشار 2009