Neural Speech Enhancement Using Dual Extended Kalman Filtering

نویسندگان

  • Alex T. Nelson
  • Eric A. Wan
چکیده

The removal of noise from speech signals has applications ranging from speech enhancement for cellular communications, to front ends for speech recognition systems. Spectral techniques are commonly used in these applications, but frequently result in audible distortion of the signal. A nonlinear time-domain method called dual extended Kalman filtering (DEKF) is presented that demonstrates significant advantages for removing nonstationaryand colored noise from speech.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of noise from speech using the dual EKF algorithm

Noise reduction for speech signals has applications ranging from speech enhancement for cellular communications, to front ends for speech recognition systems. A neural network based time-domain method called Dual Extended Kalman Filtering (Dual EKF) is presented for removing nonstationary and colored noise from speech. This paperdescribes the algorithm and provides a set of experimental results.

متن کامل

Neural Dual Extended Kalman Filtering: Applications in Speech Enhancement and Monaural Blind Signal Separation

The removal of noise from speech signals has applications ranging from speech enhancement for cellular communications, to front ends for speech recognition systems. A nonlinear time-domain method called dual extended Kalman filtering (DEKF) is presented for removing nonstationary and colored noise from speech. We further generalize the algorithm to perform the blind separation of two speech sig...

متن کامل

Low-dimensional recurrent neural network-based Kalman filter for speech enhancement

This paper proposes a new recurrent neural network-based Kalman filter for speech enhancement, based on a noise-constrained least squares estimate. The parameters of speech signal modeled as autoregressive process are first estimated by using the proposed recurrent neural network and the speech signal is then recovered from Kalman filtering. The proposed recurrent neural network is globally asy...

متن کامل

Voice Processing by Dynamic Glottal Models with Applications to Speech Enhancement

We discuss the use of low-dimensional physical models of the voice source for speech coding and processing applications. A class of waveform-adaptive dynamic glottal models and parameter tracking procedures are illustrated. The model and analysis procedures are assessed by addressing speech encoding and enhancement, achievable by using a state space version of the dynamical model in a Extended ...

متن کامل

On-Line Nonlinear Dynamic Data Reconciliation Using Extended Kalman Filtering: Application to a Distillation Column and a CSTR

Extended Kalman Filtering (EKF) is a nonlinear dynamic data reconciliation (NDDR) method. One of its main advantages is its suitability for on-line applications. This paper presents an on-line NDDR method using EKF. It is implemented for two case studies, temperature measurements of a distillation column and concentration measurements of a CSTR. In each time step, random numbers with zero m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1976