Fuel Efficient Computation in Passive Self-Assembly

نویسندگان

  • Robert T. Schweller
  • Michael Sherman
چکیده

In this paper we show that passive self-assembly in the context of the tile self-assembly model is capable of performing fuel efficient, universal computation. The tile self-assembly model is a premiere model of self-assembly in which particles are modeled by four-sided squares with glue types assigned to each tile edge. The assembly process is driven by positive and negative force interactions between glue types, allowing for tile assemblies floating in the plane to combine and break apart over time. We refer to this type of assembly model as passive in that the constituent parts remain unchanged throughout the assembly process regardless of their interactions. A computationally universal system is said to be fuel efficient if the number of tiles used up per computation step is bounded by a constant. Work within this model has shown how fuel guzzling tile systems can perform universal computation with only positive strength glue interactions [32]. Recent work has introduced space-efficient, fuel-guzzling universal computation with the addition of negative glue interactions and the use of a powerful non-diagonal class of glue interactions [19]. Other recent work has shown how to achieve fuel efficient computation [27] within active tile self-assembly. In this paper we utilize negative interactions in the tile self-assembly model to achieve the first computationally universal passive tile self-assembly system that is both space and fuel-efficient. In addition, we achieve this result using a limited diagonal class of glue interactions. ∗Department of Computer Science, University of Texas Pan American, [email protected] This author’s research was supported in part by National Science Foundation Grant CCF-1117672. †Department of Computer Science, University of Texas Pan American, [email protected] This author’s research was supported in part by National Science Foundation Grant CCF-1117672. ar X iv :1 20 8. 15 65 v1 [ cs .D S] 8 A ug 2 01 2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asynchronous Signal Passing for Tile Self-assembly: Fuel Efficient Computation and Efficient Assembly of Shapes

In this paper we study the power of a model of tile self-assembly in which individual tiles of the system have the ability to turn on or off glue types based on the bonding of other glues on the given tile. This work is motivated by the desire for a system that can effect recursive self assembly, and is guided by the consideration of a DNA origami implementation of four-sided tiles which have a...

متن کامل

Self-assembly of Shapes at Constant Scale Using Repulsive Forces

The algorithmic self-assembly of shapes has been considered in several models of self-assembly. For the problem of shape construction, we consider an extended version of the Two-Handed Tile Assembly Model (2HAM), which contains positive (attractive) and negative (repulsive) interactions. As a result, portions of an assembly can become unstable and detach. In this model, we utilize fuel-efficien...

متن کامل

One –step synthesis of PdCo alloy nanoparticles decorated on reduced grahene oxide as an Electro-catalyst for Oxygen Reduction Reaction in Passive Direct Methanol Fuel Cells

We report a Pd-Co (3:1)/graphene oxide (Pd3Co /GO) catalyst through a one-step strategy. GO is synthesized from graphite electrodes using ionic liquid-assisted electrochemical exfoliation. Controllable GO-supported Pd3Co electrocatalystis then was reduced by ethylene glycol as a stabilizing agent to prepare highly dispersed PdCo nanoparticles on carbon graphene oxide to be used as oxygen reduct...

متن کامل

Universal Shape Replicators via Self-Assembly with Attractive and Repulsive Forces

We show how to design a universal shape replicator in a selfassembly system with both attractive and repulsive forces. More precisely, we show that there is a universal set of constant-size objects that, when added to any unknown holefree polyomino shape, produces an unbounded number of copies of that shape (plus constant-size garbage objects). The constant-size objects can be easily constructe...

متن کامل

Efficient Squares and Turing Universality at Temperature 1 with a Unique Negative Glue

Is Winfree’s abstract Tile Assembly Model (aTAM) “powerful?” Well, if certain tiles are required to “cooperate” in order to be able to bind to a growing tile assembly (a.k.a., temperature 2 self-assembly), then Turing universal computation and the efficient self-assembly of N ×N squares is achievable in the aTAM (Rotemund and Winfree, STOC 2000). So yes, in a computational sense, the aTAM is qu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013