Nitric oxide-induced inhibition of smooth muscle cell proliferation involves S-nitrosation and inactivation of RhoA.

نویسندگان

  • Brian S Zuckerbraun
  • Detcho A Stoyanovsky
  • Rajib Sengupta
  • Richard A Shapiro
  • Brett A Ozanich
  • Jayashree Rao
  • Joel E Barbato
  • Edith Tzeng
چکیده

Nitric oxide (NO) acts as a vasoregulatory molecule that inhibits vascular smooth muscle cell (SMC) proliferation. Studies have illustrated that NO inhibits SMC proliferation via the extracellular signal-regulated kinase (ERK) pathway, leading to increased protein levels of the cyclin-dependent kinase inhibitor p21(Waf1/Cip1). The ERK pathway can be pro- or antiproliferative, and it has been demonstrated that the activation status of the small GTPase RhoA determines the proliferative fate of ERK signaling, whereby inactivation of RhoA influences ERK signaling to increase p21(Waf1/Cip1) and inhibit proliferation. The purpose of these investigations was to examine the effect of NO on RhoA activation/S-nitrosation and to test the hypothesis that inhibition of SMC proliferation by NO is dependent on inactivation of RhoA. NO decreases activation of RhoA, as demonstrated by RhoA GTP-binding assays, affinity precipitation, and phalloidin staining of the actin cytoskeleton. Additionally, these effects are independent of cGMP. NO decreases SMC proliferation, and gene transfer of constitutively active RhoA (RhoA(63L)) diminished the antiproliferative effects of NO, as determined by thymidine incorporation. Western blots of p21(Waf1/Cip1) correlated with changes in proliferation. S-nitrosation of recombinant RhoA protein and immunoprecipitated RhoA was demonstrated by Western blotting for nitrosocysteine and by measurement of NO release. Furthermore, NO decreases GTP loading of recombinant RhoA protein. These findings indicate that inactivation of RhoA plays a role in NO-mediated SMC antiproliferation and that S-nitrosation is associated with decreased GTP binding of RhoA. Nitrosation of RhoA and other proteins likely contributes to cGMP-independent effects of NO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

S-nitrosothiols inhibit uterine smooth muscle cell proliferation independent of metabolism to NO and cGMP formation.

S-nitrosothiols (RSNOs) are important mediators of nitric oxide (NO) biology. The two mechanisms that appear to dominate in their biological effects are metabolism leading to the formation of NO and S-nitrosation of protein thiols. In this study we demonstrate that RSNOs inhibit uterine smooth muscle cell proliferation independent of NO. The antiproliferative effects of NO on vascular smooth mu...

متن کامل

Negative regulation of rho signaling by insulin and its impact on actin cytoskeleton organization in vascular smooth muscle cells: role of nitric oxide and cyclic guanosine monophosphate signaling pathways.

Recent studies from our laboratory have shown that insulin induces relaxation of vascular smooth muscle cells (VSMCs) via stimulation of myosin phosphatase and inhibition of Rho kinase activity. In this study, we examined the mechanism whereby insulin inhibits Rho signaling and its impact on actin cytoskeleton organization. Incubation of confluent serum-starved VSMCs with thrombin or phenylephr...

متن کامل

The role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells

Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...

متن کامل

RhoA/Rho kinase and nitric oxide modulate the agonist-induced pulmonary artery diameter response time.

We studied the amplitude and response time (RT; time to 50% of maximal response) of pulmonary vasoreactivity and investigated whether the characteristics of pulmonary vasoreactivity could be modulated by endothelium removal, nitric oxide (NO) synthase inhibition [N(G)-nitro-L-arginine (L-NNA)], RhoA activation [lysophosphatidic acid (LPA)] and Rho kinase inhibition (Y-27632). Slow acetylcholine...

متن کامل

Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle.

The potent vasodilator action of cyclic GMP-dependent protein kinase (cGK) involves decreasing the Ca(2+) sensitivity of contraction of smooth muscle via stimulation of myosin light chain phosphatase through unknown mechanisms (Wu, X., Somlyo, A. V., and Somlyo, A. P. (1996) Biochem. Biophys. Res. Commun. 220, 658-663). Myosin light chain phosphatase activity is controlled by the small GTPase R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 292 2  شماره 

صفحات  -

تاریخ انتشار 2007