On the cost chromatic number of outerplanar, planar, and line graphs
نویسندگان
چکیده
We consider vertex colorings of graphs in which each color has an associated cost which is incurred each time the color is assigned to a vertex. The cost of the coloring is the sum of the costs incurred at each vertex. The cost chromatic number of a graph with respect to a cost set is the minimum number of colors necessary to produce a minimum cost coloring of the graph. We show that the cost chromatic number of maximal outerplanar and maximal planar graphs can be arbitrarily large and construct several infinite classes of counterexamples to a conjecture of Harary and Plantholt on the cost chromatic number of line graphs.
منابع مشابه
A note on the circular chromatic number of circular perfect planar graphs
Computing the circular chromatic number of a given planar graph is NP-complete, as it is already NP-complete to compute its chromatic number. In this note, we prove that the circular clique number of a planar graph, and therefore the circular chromatic number of a circular perfect graph, is computable in O(ne) time; outerplanar graphs are circular perfect.
متن کاملOriented coloring of triangle-free planar graphs and 2-outerplanar graphs
A graph is planar if it can be embedded on the plane without edge-crossing. A graph is 2-outerplanar if it has a planar embedding such that the subgraph obtained by removing the vertices of the external face is outerplanar (i.e. with all its vertices on the external face). An oriented k-coloring of an oriented graph G is a homomorphism from G to an oriented graph H of order k. We prove that eve...
متن کاملA Simple Competitive Graph Coloring Algorithm
We prove that the game coloring number, and therefore the game chromatic number, of a planar graph is at most 18. This is a slight improvement of the current upper bound of 19. Perhaps more importantly, we bound the game coloring number of a graph G in terms of a new parameter r(G). We use this result to give very easy proofs of the best known upper bounds on game coloring number for forests, i...
متن کاملOn Star Coloring of Graphs
In this paper, we deal with the notion of star coloring of graphs. A star coloring of an undirected graph G is a proper vertex coloring of G (i.e., no two neighbors are assigned the same color) such that any path of length 3 in G is not bicolored. We give the exact value of the star chromatic number of different families of graphs such as trees, cycles, complete bipartite graphs, outerplanar gr...
متن کاملOuterplanar and planar oriented cliques
The clique number of an undirected graphG is the maximum order of a complete subgraph of G and is a well-known lower bound for the chromatic number ofG. Every proper k-coloring of G may be viewed as a homomorphism (an edge-preserving vertex mapping) of G to the complete graph of order k. By considering homomorphisms of oriented graphs (digraphs without cycles of length at most 2), we get a natu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 17 شماره
صفحات -
تاریخ انتشار 1997