Synthesis of tetra-substituted imidazoles and 2-imidazolines by Ni(0)-catalyzed dehydrogenation of benzylic-type imines.

نویسندگان

  • Adrian Tlahuext-Aca
  • Oscar Hernández-Fajardo
  • Alma Arévalo
  • Juventino J García
چکیده

Ni(0)-catalyzed dehydrogenation of benzylic-type imines was performed to yield asymmetrical tetra-substituted imidazoles and 2-imidazolines. This was achieved with a single operational step while maintaining good selectivity and atom economy. The catalytic system shows low to moderate tolerance for fluoro-, trifluoromethyl-, methyl-, and methoxy-substituted benzylic-type imines. In addition, the substitution pattern at the N-heterocyclic products was easily controlled by the appropriate selection of R-groups in the starting organic substrates. Based on experimental observations, we propose a reaction mechanism in which benzylic C(sp(3))-H bond activation and insertion steps play pivotal roles in this nickel-catalyzed organic transformation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-Pot solvent-free synthesis of Highly Substituted Imidazoles catalyzed by zeolite

A series of tri- and tetra- substituted imidazoles were synthesized from benzyl, aldehyde and ammonium acetate in the presence of zeolite as an ecofriendly reusable catalyst under microwave irradiation in the absence of solvent. The yields are high to excellent and the use of microwave irradiation reduces reaction times to few minute.

متن کامل

An efficient green synthesis of highly substituted imidazoles catalyzed by Al-MCM-41 nanoreactors

Al-MCM-41 nanoreactors is found to be a remarkable efficient catalyst for one-pot multicomponent cyclocondensation of benzil, aniline or ammonium acetate and aromatic aldehydes for the synthesis of polysubstituted imidazoles under solvent-free conditions. The reaction was efficiently promoted by 10 mg nano-Al-MCM-41 and the heterogeneous catalyst was recycled for four runs in this reaction with...

متن کامل

Palladium-catalyzed multicomponent synthesis of 2-imidazolines from imines and acid chlorides.

We describe the palladium-catalyzed multicomponent synthesis of 2-imidazolines. This reaction proceeds via the coupling of imines, acid chlorides and carbon monoxide to form imidazolinium carboxylates, followed by a decarboxylation. Decarboxylation in CHCl(3) is found to result in a mixture of imidazolinium and imidazolium salts. However, the addition of benzoic acid suppresses aromatization, a...

متن کامل

Synthesis of tetra-substituted phenanthroimidazole derivatives using SBA-Pr-SO3H

A one pot four-component reaction of 9,10-phenanthraquinone, aromatic aldehyde, aniline, and ammonium acetate was designed for the preparation of tetrasubstituted imidazoles (phenanthro[9,10-d]imidazole) derivatives in the presence of SBA-Pr-SO3H as a mesoporous solid acid catalyst. Phenanthro[9,10-d]imidazole derivatives were produced by the use of this technique in short reaction times and go...

متن کامل

A palladium-catalyzed synthesis of (hetero)aryl-substituted imidazoles from aryl halides, imines and carbon monoxide† †Electronic supplementary information (ESI) available: Experimental procedures, characterization data, and NMR spectra for compounds. See DOI: 10.1039/c6sc04371b Click here for additional data file.

We describe here a tandem catalytic route to prepare imidazoles in a single operation from aryl iodides, imines and CO. The reaction involves a catalytic carbonylation of aryl halides with imines to form 1,3dipoles, which undergo spontaneous 1,3-dipolar cycloaddition. Overall, this offers an alternative to coupling reactions to construct the (hetero)aryl-imidazole motif, where variation of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 43 42  شماره 

صفحات  -

تاریخ انتشار 2014