Minimal bi-Lipschitz embedding dimension of ultrametric spaces
نویسندگان
چکیده
We prove that an ultrametric space can be bi-Lipschitz embedded in R if its metric dimension in Assouad’s sense is smaller than n. We also characterize ultrametric spaces up to bi-Lipschitz homeomorphism as dense subspaces of ultrametric inverse limits of certain inverse sequences of discrete spaces.
منابع مشابه
A GEOMETRIC STUDY OF WASSERSTEIN SPACES: ULTRAMETRICS by Benôıt
— We study the geometry of the space of measures of a compact ultrametric space X , endowed with the L Wasserstein distance from optimal transportation. We show that the power p of this distance makes this Wasserstein space affinely isometric to a convex subset of l. As a consequence, it is connected by 1 p -Hölder arcs, but any α-Hölder arc with α > 1 p must be constant. This result is obtaine...
متن کاملA Novel Approach to Embedding of Metric Spaces
An embedding of one metric space (X, d) into another (Y, ρ) is an injective map f : X → Y . The central genre of problems in the area of metric embedding is finding such maps in which the distances between points do not change “too much”. Metric Embedding plays an important role in a vast range of application areas such as computer vision, computational biology, machine learning, networking, st...
متن کاملLipschitz and uniformly continuous Reducibilities on Ultrametric polish spaces
We analyze the reducibilities induced by, respectively, uniformly continuous, Lipschitz, and nonexpansive functions on arbitrary ultrametric Polish spaces, and determine whether under suitable set-theoretical assumptions the induced degree-structures are well-behaved.
متن کاملBi-lipschitz Embedding of Projective Metrics
We give a sufficient condition for a projective metric on a subset of a Euclidean space to admit a bi-Lipschitz embedding into Euclidean space of the same dimension.
متن کاملEmbeddings of Proper Metric Spaces into Banach Spaces
We show that there exists a strong uniform embedding from any proper metric space into any Banach space without cotype. Then we prove a result concerning the Lipschitz embedding of locally finite subsets of Lp-spaces. We use this locally finite result to construct a coarse bi-Lipschitz embedding for proper subsets of any Lp-space into any Banach space X containing the l n p ’s. Finally using an...
متن کامل