Minimal bi-Lipschitz embedding dimension of ultrametric spaces

نویسندگان

  • J. Luukkainen
  • H. Movahedi - Lankarani
چکیده

We prove that an ultrametric space can be bi-Lipschitz embedded in R if its metric dimension in Assouad’s sense is smaller than n. We also characterize ultrametric spaces up to bi-Lipschitz homeomorphism as dense subspaces of ultrametric inverse limits of certain inverse sequences of discrete spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A GEOMETRIC STUDY OF WASSERSTEIN SPACES: ULTRAMETRICS by Benôıt

— We study the geometry of the space of measures of a compact ultrametric space X , endowed with the L Wasserstein distance from optimal transportation. We show that the power p of this distance makes this Wasserstein space affinely isometric to a convex subset of l. As a consequence, it is connected by 1 p -Hölder arcs, but any α-Hölder arc with α > 1 p must be constant. This result is obtaine...

متن کامل

A Novel Approach to Embedding of Metric Spaces

An embedding of one metric space (X, d) into another (Y, ρ) is an injective map f : X → Y . The central genre of problems in the area of metric embedding is finding such maps in which the distances between points do not change “too much”. Metric Embedding plays an important role in a vast range of application areas such as computer vision, computational biology, machine learning, networking, st...

متن کامل

Lipschitz and uniformly continuous Reducibilities on Ultrametric polish spaces

We analyze the reducibilities induced by, respectively, uniformly continuous, Lipschitz, and nonexpansive functions on arbitrary ultrametric Polish spaces, and determine whether under suitable set-theoretical assumptions the induced degree-structures are well-behaved.

متن کامل

Bi-lipschitz Embedding of Projective Metrics

We give a sufficient condition for a projective metric on a subset of a Euclidean space to admit a bi-Lipschitz embedding into Euclidean space of the same dimension.

متن کامل

Embeddings of Proper Metric Spaces into Banach Spaces

We show that there exists a strong uniform embedding from any proper metric space into any Banach space without cotype. Then we prove a result concerning the Lipschitz embedding of locally finite subsets of Lp-spaces. We use this locally finite result to construct a coarse bi-Lipschitz embedding for proper subsets of any Lp-space into any Banach space X containing the l n p ’s. Finally using an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007